hdu 4704 Sum【组合数学/费马小定理/大数取模】By cellur925
首先,我们珂以抽象出S函数的模型:把n拆成k个正整数,有多少种方案?
答案是C(n-1,k-1)。
然后发现我们要求的是一段连续的函数值,仔细思考,并根据组合数的性质,我们珂以发现实际上答案就是在让求2^(n-1)。
然鹅我们并不能高兴地过早。因为n的数量级竟然到了丧心病狂的1e100000.连高精度都救不了它。
费马小定理
费马小定理有两种形式: $a^{p-1}$≡1($mod$ $p$) 与 $a^p$≡$a$($mod$ $p$)。 第二种形式更为通用,是因为第一种形式不能涵盖“$a$是$p$的倍数”的情况,不够完善。第二种更加严谨。
* Update:其实这是扩展欧拉定理。思考了一上午后来被大佬告知这是一个定理...
定理可戳这位大佬的文章。
那么对于本题。我们就求$2^{{n-1}%{p-1}}%p$就行了...还要大数取膜...恶心。
$Code$
- #include<cstdio>
- #include<algorithm>
- #include<cstring>
- using namespace std;
- typedef long long ll;
- const ll moder=1e9+;
- char seq[];
- ll ksm(ll a,ll b)
- {
- ll ans=;
- while(b)
- {
- if(b&) ans=ans*a%moder;
- b>>=;
- a=a*a%moder;
- }
- return ans;
- }
- int main()
- {
- while(scanf("%s",seq+)!=EOF)
- {
- ll m=moder-;
- ll tmp=;
- int len=strlen(seq+);
- for(int i=;i<=len;i++)
- {
- tmp=tmp*+seq[i]-'';
- if(tmp>=m) tmp=tmp%m;
- }
- tmp=(tmp-+m)%m;
- printf("%lld\n",ksm(,tmp));
- }
- return ;
- }
hdu 4704 Sum【组合数学/费马小定理/大数取模】By cellur925的更多相关文章
- HDU 4704 Sum( 费马小定理 + 快速幂 )
链接:传送门 题意:求 N 的拆分数 思路: 吐嘈:求一个数 N 的拆分方案数,但是这个拆分方案十分 cd ,例如:4 = 4 , 4 = 1 + 3 , 4 = 3 + 1 , 4 = 2 + 2 ...
- hdu 4704 sum(费马小定理+快速幂)
题意: 这题意看了很久.. s(k)表示的是把n分成k个正整数的和,有多少种分法. 例如: n=4时, s(1)=1 4 s(2)=3 1,3 3,1 2,2 s ...
- HDU4704Sum 费马小定理+大数取模
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4704 题目大意: 看似复杂,其实就是求整数n的划分数,4=1+1+2和4=1+2+1是不同的.因而可 ...
- hdu 4704 Sum 【费马小定理】
题目 题意:将N拆分成1-n个数,问有多少种组成方法. 例如:N=4,将N拆分成1个数,结果就是4:将N拆分成2个数,结果就是3(即:1+3,2+2,3+1)--1+3和3+1这个算两个,则这个就是组 ...
- HDU4675【GCD of scequence】【组合数学、费马小定理、取模】
看题解一开始还有地方不理解,果然是我的组合数学思维比较差 然后理解了之后自己敲了一个果断TLE.... 我以后果然还得多练啊 好巧妙的思路啊 知识1: 对于除法取模还需要用到费马小定理: a ^ (p ...
- 2014多校第一场 I 题 || HDU 4869 Turn the pokers(费马小定理+快速幂模)
题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少 ...
- 题解报告:hdu 6440 Dream(费马小定理+构造)
解题思路:给定素数p,定义p内封闭的加法和乘法运算(运算封闭的定义:若从某个非空数集中任选两个元素(同一元素可重复选出),选出的这两个元素通过某种(或几种)运算后的得数仍是该数集中的元素,那么,就说该 ...
- Codeforces554C:Kyoya and Colored Balls(组合数学+费马小定理)
Kyoya Ootori has a bag with n colored balls that are colored with k different colors. The colors are ...
- 第十四届华中科技大学程序设计竞赛 B Beautiful Trees Cutting【组合数学/费马小定理求逆元/快速幂】
链接:https://www.nowcoder.com/acm/contest/106/B 来源:牛客网 题目描述 It's universally acknowledged that there'r ...
随机推荐
- windows下安装elasticsearch6.2.4
window 下安装 elasticsearch 一.环境搭建需要的环境 1.jdk环境 2.Elasticsearch 3.git 环境 4.node 安装包 二.进行环境的搭建 1.解压Ela ...
- Android WIFI模块分析
一:什么是WIFI WIFI是一种无线连接技术.可用于手机.电脑.PDA等终端. WIFI技术产生的目的是改善基于IEEE802.11标准的无线网络产品之间的互通性,也就是说WIFI是基于802.11 ...
- LeetCode——Binary Tree Level Order Traversal
Given a binary tree, return the level order traversal of its nodes' values. (ie, from left to right, ...
- Android - 监听Activity点击无效
监听Activity点击无效 本文地址: http://blog.csdn.net/caroline_wendy Activity须要先在Manifest注冊,才干在app中使用; Manifest: ...
- Robots协议应用与写法研究
- HDFS vs. MongoDB
HDFS MongoDB 共同点 http://www.mongoing.com/wp-content/uploads/2016/08/MDBSH2016/TJ_MongoDB+Spark.pdf 横 ...
- 1250太小了 mysql 并发
SHOW VARIABLES LIKE '%connection%'; character_set_connection utf8mb4collation_connection utf8mb4_gen ...
- react native与原生的交互
一.交互依赖的重要组件 react native 中如果想要调用ios 中相关的方法,必须依赖一个重要的组件nativemodules import { NativeModules } from ' ...
- codeforcfes Codeforces Round #287 (Div. 2) B. Amr and Pins
B. Amr and Pins time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...
- UVA11270 Tiling Dominoes —— 插头DP
题目链接:https://vjudge.net/problem/UVA-11270 题意: 用2*1的骨牌填满n*m大小的棋盘,问有多少种放置方式. 题解: 骨牌类的插头DP. 1.由于只需要记录轮廓 ...