最小生成树Prim算法和Kruskal算法(转)
(转自这位大佬的博客 http://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html )
Prim算法
1.概览
普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小。该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现;并在1957年由美国计算机科学家罗伯特·普里姆(英语:Robert C. Prim)独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。因此,在某些场合,普里姆算法又被称为DJP算法、亚尔尼克算法或普里姆-亚尔尼克算法。
2.算法简单描述
1).输入:一个加权连通图,其中顶点集合为V,边集合为E;
2).初始化:Vnew = {x},其中x为集合V中的任一节点(起始点),Enew = {},为空;
3).重复下列操作,直到Vnew = V:
a.在集合E中选取权值最小的边<u, v>,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一);
b.将v加入集合Vnew中,将<u, v>边加入集合Enew中;
4).输出:使用集合Vnew和Enew来描述所得到的最小生成树。
下面对算法的图例描述
图例 | 说明 | 不可选 | 可选 | 已选(Vnew) |
---|---|---|---|---|
此为原始的加权连通图。每条边一侧的数字代表其权值。 | - | - | - | |
顶点D被任意选为起始点。顶点A、B、E和F通过单条边与D相连。A是距离D最近的顶点,因此将A及对应边AD以高亮表示。 | C, G | A, B, E, F | D | |
下一个顶点为距离D或A最近的顶点。B距D为9,距A为7,E为15,F为6。因此,F距D或A最近,因此将顶点F与相应边DF以高亮表示。 | C, G | B, E, F | A, D | |
算法继续重复上面的步骤。距离A为7的顶点B被高亮表示。 | C | B, E, G | A, D, F | |
在当前情况下,可以在C、E与G间进行选择。C距B为8,E距B为7,G距F为11。E最近,因此将顶点E与相应边BE高亮表示。 | 无 | C, E, G | A, D, F, B | |
这里,可供选择的顶点只有C和G。C距E为5,G距E为9,故选取C,并与边EC一同高亮表示。 | 无 | C, G | A, D, F, B, E | |
顶点G是唯一剩下的顶点,它距F为11,距E为9,E最近,故高亮表示G及相应边EG。 | 无 | G | A, D, F, B, E, C | |
现在,所有顶点均已被选取,图中绿色部分即为连通图的最小生成树。在此例中,最小生成树的权值之和为39。 | 无 | 无 | A, D, F, B, E, C, G |
3.简单证明prim算法
反证法:假设prim生成的不是最小生成树
1).设prim生成的树为G0
2).假设存在Gmin使得cost(Gmin)<cost(G0) 则在Gmin中存在<u,v>不属于G0
3).将<u,v>加入G0中可得一个环,且<u,v>不是该环的最长边(这是因为<u,v>∈Gmin)
4).这与prim每次生成最短边矛盾
5).故假设不成立,命题得证.
4.算法代码实现(未检验)
#define MAX 100000
#define VNUM 10+1 //这里没有ID为0的点,so id号范围1~10 int edge[VNUM][VNUM]={/*输入的邻接矩阵*/};
int lowcost[VNUM]={0}; //记录V
new
中每个点到V中邻接点的最短边
int addvnew[VNUM]; //标记某点是否加入V
new
int adjecent[VNUM]={0}; //记录V中与V
new
最邻近的点 void prim(int start)
{
int sumweight=0;
int i,j,k=0; for(i=1;i<VNUM;i++) //顶点是从1开始
{
lowcost[i]=edge[start][i];
addvnew[i]=-1; //将所有点至于V
new
之外,V之内,这里只要对应的为-1,就表示在V
new
之外
} addvnew[start]=0; //将起始点start加入V
new
adjecent[start]=start; for(i=1;i<VNUM-1;i++)
{
int min=MAX;
int v=-1;
for(j=1;j<VNUM;j++)
{
if(addvnew[j]!=-1&&lowcost[j]<min) //在V
new
之外寻找最短路径
{
min=lowcost[j];
v=j;
}
}
if(v!=-1)
{
printf("%d %d %d\n",adjecent[v],v,lowcost[v]);
addvnew[v]=0; //将v加V
new
中 sumweight+=lowcost[v]; //计算路径长度之和
for(j=1;j<VNUM;j++)
{
if(addvnew[j]==-1&&edge[v][j]<lowcost[j])
{
lowcost[j]=edge[v][j]; //此时v点加入V
new
需要更新lowcost
adjecent[j]=v;
}
}
}
}
printf("the minmum weight is %d",sumweight);
}
5.时间复杂度
这里记顶点数v,边数e
邻接矩阵:O(v2) 邻接表:O(elog2v)
Kruskal算法
1.概览
Kruskal算法是一种用来寻找最小生成树的算法,由Joseph Kruskal在1956年发表。用来解决同样问题的还有Prim算法和Boruvka算法等。三种算法都是贪婪算法的应用。和Boruvka算法不同的地方是,Kruskal算法在图中存在相同权值的边时也有效。
2.算法简单描述
1).记Graph中有v个顶点,e个边
2).新建图Graphnew,Graphnew中拥有原图中相同的e个顶点,但没有边
3).将原图Graph中所有e个边按权值从小到大排序
4).循环:从权值最小的边开始遍历每条边 直至图Graph中所有的节点都在同一个连通分量中
if 这条边连接的两个节点于图Graphnew中不在同一个连通分量中
添加这条边到图Graphnew中
图例描述:
首先第一步,我们有一张图Graph,有若干点和边
将所有的边的长度排序,用排序的结果作为我们选择边的依据。这里再次体现了贪心算法的思想。资源排序,对局部最优的资源进行选择,排序完成后,我们率先选择了边AD。这样我们的图就变成了右图
在剩下的变中寻找。我们找到了CE。这里边的权重也是5
依次类推我们找到了6,7,7,即DF,AB,BE。
下面继续选择, BC或者EF尽管现在长度为8的边是最小的未选择的边。但是现在他们已经连通了(对于BC可以通过CE,EB来连接,类似的EF可以通过EB,BA,AD,DF来接连)。所以不需要选择他们。类似的BD也已经连通了(这里上图的连通线用红色表示了)。
3.简单证明Kruskal算法
对图的顶点数n做归纳,证明Kruskal算法对任意n阶图适用。
归纳基础:
n=1,显然能够找到最小生成树。
归纳过程:
假设Kruskal算法对n≤k阶图适用,那么,在k+1阶图G中,我们把最短边的两个端点a和b做一个合并操作,即把u与v合为一个点v',把原来接在u和v的边都接到v'上去,这样就能够得到一个k阶图G'(u,v的合并是k+1少一条边),G'最小生成树T'可以用Kruskal算法得到。
我们证明T'+{<u,v>}是G的最小生成树。
用反证法,如果T'+{<u,v>}不是最小生成树,最小生成树是T,即W(T)<W(T'+{<u,v>})。显然T应该包含<u,v>,否则,可以用<u,v>加入到T中,形成一个环,删除环上原有的任意一条边,形成一棵更小权值的生成树。而T-{<u,v>},是G'的生成树。所以W(T-{<u,v>})<=W(T'),也就是W(T)<=W(T')+W(<u,v>)=W(T'+{<u,v>}),产生了矛盾。于是假设不成立,T'+{<u,v>}是G的最小生成树,Kruskal算法对k+1阶图也适用。
由数学归纳法,Kruskal算法得证。
4.代码算法实现
typedef struct
{
char vertex[VertexNum]; //顶点表
int edges[VertexNum][VertexNum]; //邻接矩阵,可看做边表
int n,e; //图中当前的顶点数和边数
}MGraph; typedef struct node
{
int u; //边的起始顶点
int v; //边的终止顶点
int w; //边的权值
}Edge; void kruskal(MGraph G)
{
int i,j,u1,v1,sn1,sn2,k;
int vset[VertexNum]; //辅助数组,判定两个顶点是否连通
int E[EdgeNum]; //存放所有的边
k=0; //E数组的下标从0开始
for (i=0;i<G.n;i++)
{
for (j=0;j<G.n;j++)
{
if (G.edges[i][j]!=0 && G.edges[i][j]!=INF)
{
E[k].u=i;
E[k].v=j;
E[k].w=G.edges[i][j];
k++;
}
}
}
heapsort(E,k,sizeof(E[0])); //堆排序,按权值从小到大排列
for (i=0;i<G.n;i++) //初始化辅助数组
{
vset[i]=i;
}
k=1; //生成的边数,最后要刚好为总边数
j=0; //E中的下标
while (k<G.n)
{
sn1=vset[E[j].u];
sn2=vset[E[j].v]; //得到两顶点属于的集合编号
if (sn1!=sn2) //不在同一集合编号内的话,把边加入最小生成树
{
printf("%d ---> %d, %d",E[j].u,E[j].v,E[j].w);
k++;
for (i=0;i<G.n;i++)
{
if (vset[i]==sn2)
{
vset[i]=sn1;
}
}
}
j++;
}
}
时间复杂度:elog2e e为图中的边数
最小生成树Prim算法和Kruskal算法(转)的更多相关文章
- 转载:最小生成树-Prim算法和Kruskal算法
本文摘自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html 最小生成树-Prim算法和Kruskal算法 Prim算 ...
- 最小生成树Prim算法和Kruskal算法
Prim算法(使用visited数组实现) Prim算法求最小生成树的时候和边数无关,和顶点树有关,所以适合求解稠密网的最小生成树. Prim算法的步骤包括: 1. 将一个图分为两部分,一部分归为点集 ...
- 最小生成树——Prim算法和Kruskal算法
洛谷P3366 最小生成树板子题 这篇博客介绍两个算法:Prim算法和Kruskal算法,两个算法各有优劣 一般来说当图比较稀疏的时候,Kruskal算法比较快 而当图很密集,Prim算法就大显身手了 ...
- 最小生成树---Prim算法和Kruskal算法
Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (gra ...
- hdu1233 最小生成树Prim算法和Kruskal算法
Prim算法 时间复杂度:O(\(N^2\),N为结点数) 说明:先任意找一个点标记,然后每次找一条最短的两端分别为标记和未标记的边加进来,再把未标记的点标记上.即每次加入一条合法的最短的边,每次扩展 ...
- 最小生成树之Prim算法和Kruskal算法
最小生成树算法 一个连通图可能有多棵生成树,而最小生成树是一副连通加权无向图中一颗权值最小的生成树,它可以根据Prim算法和Kruskal算法得出,这两个算法分别从点和边的角度来解决. Prim算法 ...
- java实现最小生成树的prim算法和kruskal算法
在边赋权图中,权值总和最小的生成树称为最小生成树.构造最小生成树有两种算法,分别是prim算法和kruskal算法.在边赋权图中,如下图所示: 在上述赋权图中,可以看到图的顶点编号和顶点之间邻接边的权 ...
- 【数据结构】最小生成树之prim算法和kruskal算法
在日常生活中解决问题经常需要考虑最优的问题,而最小生成树就是其中的一种.看了很多博客,先总结如下,只需要您20分钟的时间,就能完全理解. 比如:有四个村庄要修四条路,让村子能两两联系起来,这时就有最优 ...
- Prim算法和Kruskal算法
Prim算法和Kruskal算法都能从连通图找出最小生成树.区别在于Prim算法是以某个顶点出发挨个找,而Kruskal是先排序边,每次选出最短距离的边再找. 一.Prim(普里姆算法)算法: ...
随机推荐
- ios开发之自己定义默认生成的导航栏 标题 颜色 返回button
一 改动导航栏颜色 导航栏在哪个页面代码放在那里面 self.navigationController.navigationBar.tintColor = [UIColor colorWithR ...
- ViewPagerIndicator
https://github.com/eltld/ViewPagerIndicator
- android-auto-scroll-view-pager
https://github.com/eltld/android-auto-scroll-view-pager
- 设计模式学习笔记——Mediator中介者模式
将众多对象之间的网状关系转为全部通过一个中间对象间接发生关系,此中间对象为中介者. 看图最直观: 作用不言而喻,就是降低对象之间的耦合度,乃至降低了整个系统的复杂度. 有点象代理模式,更象外观模式:
- Java的编程逻辑--15章 并发基础
1.run()和start()的区别 2.线程的基本属性和方法 id:一个递增的整数,每创建一个线程就加一 name 优先级:从1到10,默认为5,会映射到系统中的优先级.数字越大,要优先级越高 状态 ...
- 闭包传参 余额计算 钩子hook 闭包中的this JavaScript 钩子
闭包传参 余额计算 钩子hook 小程序 a=function(e){console.log(this)}() a=function(e){console.log(this)}() VM289 ...
- C# 软件实现远程桌面调用
1.https://www.codeproject.com/Articles/19836/Palantir-Remote-Desktop-Manager codeproject项目 2.http:// ...
- C# 自定义控件及引用自动义控件
1.http://www.cnblogs.com/hjxzjp/p/7823292.html 优先考虑从现有的控件中进行派生,并添加所需要的功能. 在解决方案资源管理器窗口中设置:引用----&g ...
- UIBarButtonSystemItem 各种款式
- Hive Metastore
metastore:实际保存表信息的地方. 包括: 数据库,表的基本信息:权限信息:存储格式信息: 各种属性信息: 权限信息: ...