题目描述:

数据范围:2<=n,m<=8

题解:

很明显需要状压。但是怎么压不知道,压什么不知道。

然后从条件下手。

条件1要求黑色在一起白色在一起,记录轮廓线很容易做到。

条件2要求不能出现$2*2$的同色方格。我们还需要再记录当前位置的左上角。

所以这道题的轮廓线长这样。

丑图。

我们需要确定一个顺序记录哪几块互相联通。由于轮廓线奇特的形状我决定这样标号。

如果编号相同但是并不互相联通我们可以知道他俩不同颜色。

为了颜色我们决定记录某个块的颜色,这样可以得到所有颜色。

于是这道题表中存的就是$1$号颜色+所有状态。

为了方便调试我用了十进制。

每次调用时都要解压,处理后压缩放回去。

由于第一行和第一列找不到长这样的轮廓线,我们可以搜出第一行所有状态,处理第一列时直接枚举黑色/白色。

接下来就是精彩的特判环节。

(这一部分针对处于中心部位的一干普通点)

以填黑色为例。

如果这里不能填黑:

1.输入要求白色。

2.拐角处已经有三个黑块。

3.要考虑到上图中红块填上后$5$号块就不再与不定颜色相邻,我们不能把$5$号块憋死我们要判断$5$号是否有与之联通的好朋友在轮廓线上。

类似围棋中的气。

如果没有而且$5$号是白的,那么就不能填黑!

等等好像是错的。

如果红块已经到$(n,m-1)$或者是$(n,m)$,而且轮廓线上其他都是黑的,我们可以放黑色。

所以这又是个特判。

4.对于3我们考虑的是上下断开,能否出现左右断开?

当然可能。

但是只能在最后一行出现。

所以统计答案时要填回去看一眼。

真 恶心。

深思熟虑后糊上去的代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 15
#define ll long long
int T,n,m,k,a[N][N];
char ch[N][N];
ll bas[N],ans;
struct Map
{
int hed[],cnt[];
struct EG
{
int nxt;
ll to,w;
}e[2][];
void ae(int f,ll t,ll w)
{
e[++cnt[k]][k].to = t;
e[cnt[k]][k].nxt = hed[f];
e[cnt[k]][k].w = w;
hed[f] = cnt[k];
}
void push(ll u,ll w)
{
for(int j=hed[u%];j;j=e[j][k].nxt)
if(e[j][k].to==u)
{
e[j][k].w += w;
return ;
}
ae(u%,u,w);
}
void clear()
{
cnt[k] = ;
memset(hed,,sizeof(hed));
}
}mp;
int col[N],grp[N],tmp[N],las[N];
ll zip()
{
ll ret = ;
for(int i=;i<=m+;i++)ret=*(ret+grp[i]);
return ret+col[];
}
void upz(ll u)
{
memset(tmp,-,sizeof(tmp));
tmp[]=u%;u/=;
for(int i=m+;i>=;i--,u/=)grp[i]=u%;
for(int i=;i<=m+;i++)
if(tmp[grp[i]]==-)tmp[grp[i]]=tmp[grp[i-]]^;
for(int i=;i<=m+;i++)
col[i]=tmp[grp[i]];
}
void shake()//get the express
{
memset(tmp,,sizeof(tmp));
for(int cnt=,i=;i<=m+;i++)
if(!tmp[grp[i]])tmp[grp[i]]=++cnt;
for(int i=;i<=m+;i++)grp[i]=tmp[grp[i]];
}
bool find_friend(int now,int beg,int ens)
{
int cnt = ;
for(int i=beg;i<=ens;i++)
if(grp[i]==now)cnt++;
return cnt>;
}
bool ck1()
{
for(int i=;i<=m;i++)
if(col[i]+a[][i]==)return ;
return ;
}
bool ck2()
{
int cnt = ;
for(int i=;i<=m;i++)
cnt+=(col[i]!=col[i-]);
return cnt<=;
}
int ck3(int c)
{
if(col[m-]==col[m]&&col[m]==col[m+]&&col[m+]==c)return ;
int c0 = col[m],ret=;
for(int i=;i<=m+;i++)las[i]=grp[i];
col[m] = c;grp[m] = m+;
if(col[m-]==c)
{
int kg = grp[m-];
for(int i=;i<=m+;i++)if(grp[i]==kg)grp[i]=m+;
}
if(col[m+]==c)
{
int kg = grp[m+];
for(int i=;i<=m+;i++)if(grp[i]==kg)grp[i]=m+;
}
shake();
for(int i=;i<=m+;i++)if(grp[i]>)ret = ;
for(int i=;i<=m+;i++)grp[i] = las[i];
if(col[m-]==c)
{
int kg = grp[m-];
for(int i=;i<=m+;i++)if(grp[i]==kg)grp[i]=m+;
}
if(col[m+]==c)
{
int kg = grp[m+];
for(int i=;i<=m+;i++)if(grp[i]==kg)grp[i]=m+;
}
shake();
for(int i=;i<=m+;i++)if(grp[i]>)ret = ;
for(int i=;i<=m+;i++)grp[i]=las[i];
col[m] = c0;
return ret;
}
void PushF()
{
for(int i=;i<(<<m);i++)
{
for(int j=;j<=m;j++)col[j]=(i>>(j-))&;
if(!ck1())continue;
if(!ck2())continue;
grp[]=;
for(int j=;j<=m+;j++)if(col[j]==col[j-])grp[j]=grp[j-];else grp[j]=grp[j-]+;
mp.push(zip(),);
}
}
bool check_b(int i,int j)
{
if(a[i][j]==)return ;
if(col[j-]==&&col[j]==&&col[j+]==)return ;
if((i!=n||j!=m)&&(i!=n||j!=m-))
if(col[j+]==&&!find_friend(grp[j+],j+,m+)&&!find_friend(grp[j+],,j-))
return ;
return ;
}
bool check_w(int i,int j)
{
if(a[i][j]==)return ;
if(col[j-]==&&col[j]==&&col[j+]==)return ;
if((i!=n||j!=m)&&(i!=n||j!=m-))
if(col[j+]==&&!find_friend(grp[j+],j+,m+)&&!find_friend(grp[j+],,j-))
return ;
return ;
}
int main()
{
// freopen("tt.in","r",stdin);
scanf("%d",&T);
bas[]=;
for(int i=;i<=;i++)bas[i] = *bas[i-];
while(T--)
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
{
scanf("%s",ch[i]+);
for(int j=;j<=m;j++)
{
if(ch[i][j]=='o')a[i][j]=;
else if(ch[i][j]=='#')a[i][j]=;
else a[i][j]=;
}
}
ans=,k=,mp.clear();
PushF();
for(int i=;i<=n;i++)
{
k^=;mp.clear();
for(int j=;j<=mp.cnt[!k];j++)
{
ll now = mp.e[j][!k].to,val = mp.e[j][!k].w;
upz(now);
for(int o=m+;o>=;o--)grp[o]=grp[o-],col[o]=col[o-];
for(int q=;q<=m+;q++)las[q]=grp[q];
if(a[i][]!=)//black
{
if(col[]==)
{
col[]=,grp[]=grp[];
shake();
mp.push(zip(),val);
}else
{
if(find_friend(grp[],,m+))
{
col[]=,grp[]=m+;
shake();
mp.push(zip(),val);
}else if(i==n&&m==)
{
col[]=,grp[]=m+;
shake();
mp.push(zip(),val);
}
}
}
for(int q=;q<=m+;q++)grp[q]=las[q];
if(a[i][]!=)//white
{
if(col[]==)
{
col[]=,grp[]=grp[];
shake();
mp.push(zip(),val);
}else
{
if(find_friend(grp[],,m+))
{
col[]=,grp[]=m+;
shake();
mp.push(zip(),val);
}else if(i==n&&m==)
{
col[]=,grp[]=m+;
shake();
mp.push(zip(),val);
}
}
}
}
for(int j=;j<=m;j++)
{
k^=,mp.clear();
for(int o=;o<=mp.cnt[!k];o++)
{
ll now = mp.e[o][!k].to,val = mp.e[o][!k].w;
upz(now);int c0 = col[j];
if(i==n&&j==m)
{
if(n==&&m==)
{
if(col[]==col[])
{
if((a[n][m]==||a[n][m]!=col[])&&col[]==col[])
ans+=val*ck3(col[]^);
else if((a[n][m]==||a[n][m]==col[])&&col[]!=col[])
ans+=val*ck3(col[]);
}else
{
if(a[n][m]==)ans+=val*(ck3()+ck3());
else ans+=val*ck3(a[n][m]);
}
}else
{
if(col[m-]==col[m+])
{
if(a[n][m]==||a[n][m]==col[m-])
ans+=val*ck3(col[m-]);
}else
{
if(a[n][m]==)ans+=val*(ck3()+ck3());
else ans+=val*ck3(a[n][m]);
}
}
continue;
}
if(check_b(i,j))//black
{
col[j]=;grp[j]=m+;
for(int q=;q<=m+;q++)las[q]=grp[q];
if(col[j-]==)
{
int kg = grp[j-];
for(int q=;q<=m+;q++)if(grp[q]==kg)grp[q]=m+;
}
if(col[j+]==)
{
int kg = grp[j+];
for(int q=;q<=m+;q++)if(grp[q]==kg)grp[q]=m+;
}
shake();
if(i==n&&j==m)ans+=val;
mp.push(zip(),val);
for(int q=;q<=m+;q++)grp[q]=las[q];
}
col[j] = c0;
if(check_w(i,j))//white
{
col[j]=;grp[j]=m+;
if(col[j-]==)
{
int kg = grp[j-];
for(int q=;q<=m+;q++)if(grp[q]==kg)grp[q]=m+;
}
if(col[j+]==)
{
int kg = grp[j+];
for(int q=;q<=m+;q++)if(grp[q]==kg)grp[q]=m+;
}
shake();
if(i==n&&j==m)ans+=val;
mp.push(zip(),val);
}
}
}
}
printf("%lld\n",ans);
}
return ;
}

bzoj3336 Uva10572 Black and White的更多相关文章

  1. BZOJ3336: Uva10572 Black and White(插头Dp)

    解题思路: 分类讨论即可. 代码(懒得删Debug了): #include<map> #include<cstdio> #include<vector> #incl ...

  2. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  3. imshow() displays a white image for a grey image

    Matlab expects images of type double to be in the 0..1 range and images that are uint8 in the 0..255 ...

  4. ural 2063. Black and White

    2063. Black and White Time limit: 1.0 secondMemory limit: 64 MB Let’s play a game. You are given a r ...

  5. 彩色照片转换为黑白照片(Color image converted to black and white picture)

    This blog will be talking about the color image converted to black and white picture. The project st ...

  6. HDU 5113 Black And White 回溯+剪枝

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5113 Black And White Time Limit: 2000/2000 MS (Java/ ...

  7. SCU3185 Black and white(二分图最大点权独立集)

    题目大概说有几个黑色.白色矩阵,问能选出黑白不相交的矩形面积和的最大值. 建二分图,黑色矩阵为X部的点,白色为Y部,XY的点权都为其矩阵面积,如果有个黑白矩阵相交则它们之间有一条边,那样问题就是要从这 ...

  8. White Rectangles[HDU1510]

    White Rectangles Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  9. nVIDIA SDK White Paper ----Vertex Texture Fetch Water

    http://blog.csdn.net/soilwork/article/details/713842 nVIDIA SDK White Paper ----Vertex Texture Fetch ...

随机推荐

  1. PhpStorm之服务器篇

    打开编辑器,依次点击 Tools->Deloyment->Configuration,进入连接服务器的配置页面 2.点击左上角的 + ,配置一个新的服务器 3.填写添加之后服务器的名称,并 ...

  2. 51nod 1276 【离线化】

    思路1.: 离线处理: 具体就是把岛屿离线然后按照高度排序,把query按照从高到低排序,然后每次query只要从最高的岛屿开始找起,判断条件:如果他旁边都是没有被找过的(也就是默认是海),那么数量+ ...

  3. poj 2891 Strange Way to Express Integers【扩展中国剩余定理】

    扩展中国剩余定理板子 #include<iostream> #include<cstdio> using namespace std; const int N=100005; ...

  4. loj#2542. 「PKUWC2018」随机游走(树形dp+Min-Max容斥)

    传送门 首先,关于\(Min-Max\)容斥 设\(S\)为一个点的集合,每个点的权值为走到这个点的期望时间,则\(Max(S)\)即为走遍这个集合所有点的期望时间,\(Min(S)\)即为第一次走到 ...

  5. (DP)51NOD 1007正整数分组

    将一堆正整数分为2组,要求2组的和相差最小. 例如:1 2 3 4 5,将1 2 4分为1组,3 5分为1组,两组和相差1,是所有方案中相差最少的.   输入 第1行:一个数N,N为正整数的数量. 第 ...

  6. C# BitmapData和Marshal.Copy()用法

    C# BitmapData和Marshal.Copy()用法 //此函数用法例子如下: public static byte[] GetGrayArray(Bitmap srcBmp, Rectang ...

  7. spring boot eureka server

    ServerApplication @EnableEurekaServer @SpringBootApplication public class ServerApplication { public ...

  8. Lightoj 1231 - Coin Change (I) (裸裸的多重背包)

    题目链接: Lightoj  1231 - Coin Change (I) 题目描述: 就是有n种硬币,每种硬币有两个属性(价值,数目).问用给定的硬币组成K面值,有多少种方案? 解题思路: 赤果果的 ...

  9. Java项目的命名规则

    Java类的命名规范如下: 1. 项目名全部小写 2. 包名全部小写 3. 类名首字母大写,如果类名由多个单词组成,每个单词的首字母都要大写. 如:public class MyFirstClass{ ...

  10. SUSAN角点检测

    close all; clear all; I=imread('corner2.gif'); [posX,posY]=susan(I,); figure; imshow(I);hold on; plo ...