bzoj3336 Uva10572 Black and White
题目描述:
数据范围:2<=n,m<=8
题解:
很明显需要状压。但是怎么压不知道,压什么不知道。
然后从条件下手。
条件1要求黑色在一起白色在一起,记录轮廓线很容易做到。
条件2要求不能出现$2*2$的同色方格。我们还需要再记录当前位置的左上角。
所以这道题的轮廓线长这样。
丑图。
我们需要确定一个顺序记录哪几块互相联通。由于轮廓线奇特的形状我决定这样标号。
如果编号相同但是并不互相联通我们可以知道他俩不同颜色。
为了颜色我们决定记录某个块的颜色,这样可以得到所有颜色。
于是这道题表中存的就是$1$号颜色+所有状态。
为了方便调试我用了十进制。
每次调用时都要解压,处理后压缩放回去。
由于第一行和第一列找不到长这样的轮廓线,我们可以搜出第一行所有状态,处理第一列时直接枚举黑色/白色。
接下来就是精彩的特判环节。
(这一部分针对处于中心部位的一干普通点)
以填黑色为例。
如果这里不能填黑:
1.输入要求白色。
2.拐角处已经有三个黑块。
3.要考虑到上图中红块填上后$5$号块就不再与不定颜色相邻,我们不能把$5$号块憋死我们要判断$5$号是否有与之联通的好朋友在轮廓线上。
类似围棋中的气。
如果没有而且$5$号是白的,那么就不能填黑!
等等好像是错的。
如果红块已经到$(n,m-1)$或者是$(n,m)$,而且轮廓线上其他都是黑的,我们可以放黑色。
所以这又是个特判。
4.对于3我们考虑的是上下断开,能否出现左右断开?
当然可能。
但是只能在最后一行出现。
所以统计答案时要填回去看一眼。
真 恶心。
深思熟虑后糊上去的代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 15
#define ll long long
int T,n,m,k,a[N][N];
char ch[N][N];
ll bas[N],ans;
struct Map
{
int hed[],cnt[];
struct EG
{
int nxt;
ll to,w;
}e[2][];
void ae(int f,ll t,ll w)
{
e[++cnt[k]][k].to = t;
e[cnt[k]][k].nxt = hed[f];
e[cnt[k]][k].w = w;
hed[f] = cnt[k];
}
void push(ll u,ll w)
{
for(int j=hed[u%];j;j=e[j][k].nxt)
if(e[j][k].to==u)
{
e[j][k].w += w;
return ;
}
ae(u%,u,w);
}
void clear()
{
cnt[k] = ;
memset(hed,,sizeof(hed));
}
}mp;
int col[N],grp[N],tmp[N],las[N];
ll zip()
{
ll ret = ;
for(int i=;i<=m+;i++)ret=*(ret+grp[i]);
return ret+col[];
}
void upz(ll u)
{
memset(tmp,-,sizeof(tmp));
tmp[]=u%;u/=;
for(int i=m+;i>=;i--,u/=)grp[i]=u%;
for(int i=;i<=m+;i++)
if(tmp[grp[i]]==-)tmp[grp[i]]=tmp[grp[i-]]^;
for(int i=;i<=m+;i++)
col[i]=tmp[grp[i]];
}
void shake()//get the express
{
memset(tmp,,sizeof(tmp));
for(int cnt=,i=;i<=m+;i++)
if(!tmp[grp[i]])tmp[grp[i]]=++cnt;
for(int i=;i<=m+;i++)grp[i]=tmp[grp[i]];
}
bool find_friend(int now,int beg,int ens)
{
int cnt = ;
for(int i=beg;i<=ens;i++)
if(grp[i]==now)cnt++;
return cnt>;
}
bool ck1()
{
for(int i=;i<=m;i++)
if(col[i]+a[][i]==)return ;
return ;
}
bool ck2()
{
int cnt = ;
for(int i=;i<=m;i++)
cnt+=(col[i]!=col[i-]);
return cnt<=;
}
int ck3(int c)
{
if(col[m-]==col[m]&&col[m]==col[m+]&&col[m+]==c)return ;
int c0 = col[m],ret=;
for(int i=;i<=m+;i++)las[i]=grp[i];
col[m] = c;grp[m] = m+;
if(col[m-]==c)
{
int kg = grp[m-];
for(int i=;i<=m+;i++)if(grp[i]==kg)grp[i]=m+;
}
if(col[m+]==c)
{
int kg = grp[m+];
for(int i=;i<=m+;i++)if(grp[i]==kg)grp[i]=m+;
}
shake();
for(int i=;i<=m+;i++)if(grp[i]>)ret = ;
for(int i=;i<=m+;i++)grp[i] = las[i];
if(col[m-]==c)
{
int kg = grp[m-];
for(int i=;i<=m+;i++)if(grp[i]==kg)grp[i]=m+;
}
if(col[m+]==c)
{
int kg = grp[m+];
for(int i=;i<=m+;i++)if(grp[i]==kg)grp[i]=m+;
}
shake();
for(int i=;i<=m+;i++)if(grp[i]>)ret = ;
for(int i=;i<=m+;i++)grp[i]=las[i];
col[m] = c0;
return ret;
}
void PushF()
{
for(int i=;i<(<<m);i++)
{
for(int j=;j<=m;j++)col[j]=(i>>(j-))&;
if(!ck1())continue;
if(!ck2())continue;
grp[]=;
for(int j=;j<=m+;j++)if(col[j]==col[j-])grp[j]=grp[j-];else grp[j]=grp[j-]+;
mp.push(zip(),);
}
}
bool check_b(int i,int j)
{
if(a[i][j]==)return ;
if(col[j-]==&&col[j]==&&col[j+]==)return ;
if((i!=n||j!=m)&&(i!=n||j!=m-))
if(col[j+]==&&!find_friend(grp[j+],j+,m+)&&!find_friend(grp[j+],,j-))
return ;
return ;
}
bool check_w(int i,int j)
{
if(a[i][j]==)return ;
if(col[j-]==&&col[j]==&&col[j+]==)return ;
if((i!=n||j!=m)&&(i!=n||j!=m-))
if(col[j+]==&&!find_friend(grp[j+],j+,m+)&&!find_friend(grp[j+],,j-))
return ;
return ;
}
int main()
{
// freopen("tt.in","r",stdin);
scanf("%d",&T);
bas[]=;
for(int i=;i<=;i++)bas[i] = *bas[i-];
while(T--)
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
{
scanf("%s",ch[i]+);
for(int j=;j<=m;j++)
{
if(ch[i][j]=='o')a[i][j]=;
else if(ch[i][j]=='#')a[i][j]=;
else a[i][j]=;
}
}
ans=,k=,mp.clear();
PushF();
for(int i=;i<=n;i++)
{
k^=;mp.clear();
for(int j=;j<=mp.cnt[!k];j++)
{
ll now = mp.e[j][!k].to,val = mp.e[j][!k].w;
upz(now);
for(int o=m+;o>=;o--)grp[o]=grp[o-],col[o]=col[o-];
for(int q=;q<=m+;q++)las[q]=grp[q];
if(a[i][]!=)//black
{
if(col[]==)
{
col[]=,grp[]=grp[];
shake();
mp.push(zip(),val);
}else
{
if(find_friend(grp[],,m+))
{
col[]=,grp[]=m+;
shake();
mp.push(zip(),val);
}else if(i==n&&m==)
{
col[]=,grp[]=m+;
shake();
mp.push(zip(),val);
}
}
}
for(int q=;q<=m+;q++)grp[q]=las[q];
if(a[i][]!=)//white
{
if(col[]==)
{
col[]=,grp[]=grp[];
shake();
mp.push(zip(),val);
}else
{
if(find_friend(grp[],,m+))
{
col[]=,grp[]=m+;
shake();
mp.push(zip(),val);
}else if(i==n&&m==)
{
col[]=,grp[]=m+;
shake();
mp.push(zip(),val);
}
}
}
}
for(int j=;j<=m;j++)
{
k^=,mp.clear();
for(int o=;o<=mp.cnt[!k];o++)
{
ll now = mp.e[o][!k].to,val = mp.e[o][!k].w;
upz(now);int c0 = col[j];
if(i==n&&j==m)
{
if(n==&&m==)
{
if(col[]==col[])
{
if((a[n][m]==||a[n][m]!=col[])&&col[]==col[])
ans+=val*ck3(col[]^);
else if((a[n][m]==||a[n][m]==col[])&&col[]!=col[])
ans+=val*ck3(col[]);
}else
{
if(a[n][m]==)ans+=val*(ck3()+ck3());
else ans+=val*ck3(a[n][m]);
}
}else
{
if(col[m-]==col[m+])
{
if(a[n][m]==||a[n][m]==col[m-])
ans+=val*ck3(col[m-]);
}else
{
if(a[n][m]==)ans+=val*(ck3()+ck3());
else ans+=val*ck3(a[n][m]);
}
}
continue;
}
if(check_b(i,j))//black
{
col[j]=;grp[j]=m+;
for(int q=;q<=m+;q++)las[q]=grp[q];
if(col[j-]==)
{
int kg = grp[j-];
for(int q=;q<=m+;q++)if(grp[q]==kg)grp[q]=m+;
}
if(col[j+]==)
{
int kg = grp[j+];
for(int q=;q<=m+;q++)if(grp[q]==kg)grp[q]=m+;
}
shake();
if(i==n&&j==m)ans+=val;
mp.push(zip(),val);
for(int q=;q<=m+;q++)grp[q]=las[q];
}
col[j] = c0;
if(check_w(i,j))//white
{
col[j]=;grp[j]=m+;
if(col[j-]==)
{
int kg = grp[j-];
for(int q=;q<=m+;q++)if(grp[q]==kg)grp[q]=m+;
}
if(col[j+]==)
{
int kg = grp[j+];
for(int q=;q<=m+;q++)if(grp[q]==kg)grp[q]=m+;
}
shake();
if(i==n&&j==m)ans+=val;
mp.push(zip(),val);
}
}
}
}
printf("%lld\n",ans);
}
return ;
}
bzoj3336 Uva10572 Black and White的更多相关文章
- BZOJ3336: Uva10572 Black and White(插头Dp)
解题思路: 分类讨论即可. 代码(懒得删Debug了): #include<map> #include<cstdio> #include<vector> #incl ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- imshow() displays a white image for a grey image
Matlab expects images of type double to be in the 0..1 range and images that are uint8 in the 0..255 ...
- ural 2063. Black and White
2063. Black and White Time limit: 1.0 secondMemory limit: 64 MB Let’s play a game. You are given a r ...
- 彩色照片转换为黑白照片(Color image converted to black and white picture)
This blog will be talking about the color image converted to black and white picture. The project st ...
- HDU 5113 Black And White 回溯+剪枝
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5113 Black And White Time Limit: 2000/2000 MS (Java/ ...
- SCU3185 Black and white(二分图最大点权独立集)
题目大概说有几个黑色.白色矩阵,问能选出黑白不相交的矩形面积和的最大值. 建二分图,黑色矩阵为X部的点,白色为Y部,XY的点权都为其矩阵面积,如果有个黑白矩阵相交则它们之间有一条边,那样问题就是要从这 ...
- White Rectangles[HDU1510]
White Rectangles Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- nVIDIA SDK White Paper ----Vertex Texture Fetch Water
http://blog.csdn.net/soilwork/article/details/713842 nVIDIA SDK White Paper ----Vertex Texture Fetch ...
随机推荐
- (水题)洛谷 - P1618 - 三连击(升级版)
https://www.luogu.org/problemnew/show/P1618 枚举所有的A,最多 $A_9^3$ ,然后生成B和C(先判断是不是能够生成),判断有没有重复数字(比之前那个优雅 ...
- 51nod 1344 【前缀和】
思路:求一下最小负数的前缀和 #include<cstdio> #include <map> #include<iostream> #include<stri ...
- UIScrollView控件实现图片轮播
http://www.cnblogs.com/dyf520/p/3805297.html 一.实现效果 实现图片的自动轮播 二.实现代码 storyboard中布局 代码: 1 ...
- Luogu P1850换教室【期望dp】By cellur925
题目传送门 首先这个题我们一看它就是和概率期望有关,而大多数时候在OI中遇到他们时,都是与dp相关的. \(Vergil\)学长表示,作为\(NOIp2016\)的当事人,他们考前奶联赛一定不会考概率 ...
- Luogu P1463 [POI2002][HAOI2007]反素数【数论/dfs】By cellur925
题目传送门 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1 ...
- VMware安装Centos 7,网络连接问题以及解决方案
转自: https://www.cnblogs.com/owaowa/p/6123902.html 在这里表示万分感谢 在使用CentOS虚拟机后,出现了无法上网的情况,使用主机ping虚机地址可以p ...
- CI框架错误汇总
2017年1月13日12:09:02 [1] A PHP Error was encounteredSeverity: NoticeMessage: Undefined variable: aticl ...
- python之条件判断、循环和字符串格式化
1. python的条件判断:if和else 在条件判断中可以使用算数运算符 等于:== 不等于:!= 大于:> 小于:< 大于等于:>= 小于等于:<= 示例1: usern ...
- HAL之串口
在STM32cubeMX中 1 外设功能打开 2 GPIO对应管脚的串口功能打开 3 对应GPIO引脚的配置 4串口的配置,中断的设置 在MDK中 5.1 串口初始化MX_USART1_UART_In ...
- toLocaleSting()
之前一直忽略了这一方法,直到前天的笔试题,两种方式实现如下功能... 1234567890→1,234,567,890 当时我的思路是这样的:1.字符串反转,插入逗号,再反转 2.求余数,将字符串一分 ...