【BZOJ 2431】 [HAOI2009] 逆序对数列 (DP)
Description
对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数。若对于任意一个由1~n自然数组成的
数列,可以很容易求出有多少个逆序对数。那么逆序对数为k的这样自然数数列到底有多少个?
Input
第一行为两个整数n,k。
Output
写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果。
Sample Input
4 1
Sample Output
3
样例说明:
下列3个数列逆序对数都为1;分别是1 2 4 3 ;1 3 2 4 ;2 1 3 4;100%的数据 n<=1000,k<=1000
题解
设\(dp[i][j]\)表示前i个数逆序数为j,状态转移方程为:
\[dp[i][j]=\sum\limits_{k=0}^{k<=i-1}{dp[i-1][j-k]}
\]这样的状态转移是\(O(n^3)\)的,因此需要使用前缀和优化转移
代码
#include<queue>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define ll long long
#define inf 30005
using namespace std;
int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
void Out(ll a){
if(a<0) putchar('-'),a=-a;
if(a>=10) Out(a/10);
putchar(a%10+'0');
}
const int N=1005;
const int MOD=10000;
int dp[N][N],sum[N][N];
int main(){
int n=read(),k=read();
dp[1][0]=1;
for(int i=0;i<=k;i++) sum[1][i]=1;
for(int i=2;i<=n;i++){
for(int j=0;j<=k;j++){
dp[i][j]=sum[i-1][j];
if(j-i>=0) dp[i][j]-=sum[i-1][j-i];
if(dp[i][j]<0) dp[i][j]+=MOD;
dp[i][j]%=MOD;
}
sum[i][0]=1;
for(int j=1;j<=k;j++) sum[i][j]=(sum[i][j-1]+dp[i][j])%MOD;
}
Out(dp[n][k]);
return 0;
}
【BZOJ 2431】 [HAOI2009] 逆序对数列 (DP)的更多相关文章
- BZOJ 2431: [HAOI2009]逆序对数列( dp )
dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...
- BZOJ 2431 [HAOI2009]逆序对数列:dp 逆序对
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2431 题意: 给定n,k,问你有多少个由1~n组成的排列,使得逆序对个数恰好为k个. 题解 ...
- BZOJ 2431: [HAOI2009]逆序对数列【dp】
Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那么逆序 ...
- Bzoj 2431 HAOI2009 逆序对数列
Description 对于一个数列{ai},如果有i**<**j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数. ...
- [bzoj 2431][HAOI2009]逆序对数列(递推+连续和优化)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2431 分析: f(i,j)表示前i个数字逆序对数目为j时候的方案数 那么有f(i,j) ...
- 2431: [HAOI2009]逆序对数列
2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 954 Solved: 548[Submit][Status ...
- BZOJ2431:[HAOI2009]逆序对数列(DP,差分)
Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆 ...
- 【bzoj2431】[HAOI2009]逆序对数列 dp
题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这 ...
- [bzoj2431][HAOI2009][逆序对数列] (dp计数)
Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆 ...
- [BZOJ2431][HAOI2009]逆序对数列(DP)
从小到大加数,根据加入的位置转移,裸的背包DP. #include<cstdio> #include<cstring> #include<algorithm> #d ...
随机推荐
- js 合并2个结构
var conditions = getJsonObj("conditionArea"); var plogId = { ProgId: getProgId() }; $.exte ...
- 跟我一起玩Win32开发(19):浏览和打开文件
在应用程序中,我们很经常要实现的功能,是Open文件或保存文件对话框,让用户来选择一个或N个文件.本文我将介绍两种思路,第一种方法较为复杂,第二种方法较为简单. 方法一:老规矩 这是一种传统方法,使用 ...
- zabbix网络发现主机
1 功能介绍 默认情况下,当我在主机上安装agent,然后要在server上手动添加主机并连接到模板,加入一个主机组. 如果有很多主机,并且经常变动,手动操作就很麻烦. 网络发现就是主机上安装了age ...
- 自适应的两端对齐:text-align:justify
<!DOCTYPE HTML> <html> <head> <title>文本两端对齐 by hongchenok</title> < ...
- [转]Java中Date转换大全,返回yyyy-MM-dd的Date类型
/** * 获取现在时间,这个好用 * * @return返回长时间格式 yyyy-MM-dd HH:mm:ss */ public static Date getSqlDate() { Date s ...
- (021)VMWare副虚拟磁盘和子虚拟磁盘id不匹配
问题:因为某种原因,修改了VM虚拟机的父磁盘内容,导致开机时出现如下错误: 父虚拟磁盘在子虚拟磁盘创建之后被修改过.父虚拟磁盘的内容 ID 与子虚拟磁盘中对应的父内容 ID 不匹配打不开磁盘“***. ...
- P1739 表达式括号匹配
题目描述 假设一个表达式有英文字母(小写).运算符(+,—,*,/)和左右小(圆)括号构成,以“@”作为表达式的结束符.请编写一个程序检查表达式中的左右圆括号是否匹配,若匹配,则返回“YES”:否则返 ...
- Java GUI简介
Java有2个GUI库:AWT.Swing. AWT是SUN最早提供的GUI库,依赖本地平台,界面不好看,功能有限.之后推出了Swing,Swing并没有完全替代AWT,而是建立在AWT基础上的.Sw ...
- poj3436 Computer Factory
题意: 电脑公司生产电脑有N个机器,每个机器单位时间产量为Qi. 电脑由P个部件组成,每个机器工作时只能把有某些部件的半成品电脑(或什么都没有的空电脑)变成有另一些部件的半成品电脑或完整电脑(也可能移 ...
- laravel之伪造跨站请求保护CSRF实现机制
Laravel 提供了简单的方法使你的应用免受 跨站请求伪造 (CSRF) 的袭击.跨站请求伪造是一种恶意的攻击,它凭借已通过身份验证的用户身份来运行未经过授权的命令. Laravel 为每个活跃用户 ...