fft裸题 我还没有背下来fft

#include<bits/stdc++.h>
#define pi acos(-1)
using namespace std;
const int N = ;
int n, m, L, x;
int r[N];
complex<double> a[N], b[N];
void fft(complex<double> *a, int f)
{
for(int i = ; i < n; ++i) if(i < r[i]) swap(a[i], a[r[i]]);
for(int i = ; i < n; i <<= )
{
complex<double> t(cos(pi / i), f * sin(pi / i));
for(int p = i << , j = ; j < n; j += p)
{
complex<double> w(, );
for(int k = ; k < i; ++k, w *= t)
{
complex<double> x = a[j + k], y = w * a[j + k + i];
a[j + k] = x + y; a[j + k + i] = x - y;
}
}
}
}
int main()
{
scanf("%d%d", &n, &m);
for(int i = ; i <= n; ++i) scanf("%d", &x), a[i] = x;
for(int i = ; i <= m; ++i) scanf("%d", &x), b[i] = x;
m = n + m; for(n = ; n <= m; n <<= ) ++L;
for(int i = ; i < n; ++i) r[i] = (r[i >> ] >> ) | ((i & ) << (L - ));
fft(a, ); fft(b, );
for(int i = ; i <= n; ++i) a[i] = a[i] * b[i];
fft(a, -);
for(int i = ; i <= m; ++i) printf("%d ", (int)(a[i].real() / n + 0.5));
return ;
}

bzoj2179的更多相关文章

  1. 【BZOJ2179】FFT快速傅立叶

    [BZOJ2179]FFT快速傅立叶 Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位 ...

  2. [bzoj2179]FFT快速傅立叶_FFT

    FFT快速傅立叶 bzoj-2179 题目大意:给出两个n位10进制整数x和y,你需要计算x*y. 注释:$1\le n\le 6\times 10^4$. 想法: $FFT$入门题. $FFT$实现 ...

  3. BZOJ2179: FFT快速傅立叶 & caioj1450:【快速傅里叶变换】大整数乘法

    [传送门:BZOJ2179&caioj1450] 简要题意: 给出两个超级大的整数,求出a*b 题解: Rose_max出的一道FFT例题,卡掉高精度 = =(没想到BZOJ也有) 只要把a和 ...

  4. 【BZOJ-2179&2194】FFT快速傅里叶&快速傅里叶之二 FFT

    2179: FFT快速傅立叶 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2978  Solved: 1523[Submit][Status][Di ...

  5. bzoj2179: FFT快速傅立叶

    #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> ...

  6. 【bzoj2179】FFT快速傅立叶 FFT模板

    2016-06-01  09:34:54 很久很久很久以前写的了... 今天又比较了一下效率,貌似手写复数要快很多. 贴一下模板: #include<iostream> #include& ...

  7. FFT模板(BZOJ2179)

    实现了两个长度为n的大数相乘. #include <cstdio> #include <cmath> #include <complex> using namesp ...

  8. bzoj千题计划166:bzoj2179: FFT快速傅立叶

    http://www.lydsy.com/JudgeOnline/problem.php?id=2179 FFT做高精乘 #include<cmath> #include<cstdi ...

  9. BZOJ2179:FFT快速傅立叶(FFT)

    Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. Output 输出 ...

  10. 【bzoj2179】FFT快速傅立叶 FFT

    题目描述 给出两个n位10进制整数x和y,你需要计算x*y. 输入 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. 输出 输出一行,即x*y的结果. 样例 ...

随机推荐

  1. JavaScript Simple Explain and Use

    Javascript 说明: JavaScript 和 Java 之间几乎没有任何关系. JavaScript原名为LiveScript,他的作用只是为了处理一些复杂的动态网页. 目前,JS是遵循EC ...

  2. typora_test

    加粗标题 加下标线 <!--aba--> #Include ![](C:\Users\123\Pictures\Saved Pictures\1.jpg) ![](http://gyz.g ...

  3. [USACO] 奶牛混合起来 Mixed Up Cows

    题目描述 Each of Farmer John's N (4 <= N <= 16) cows has a unique serial number S_i (1 <= S_i & ...

  4. 剑指offer---最小的K个数

    题目:最小的K个数 要求:输入n个整数,找出其中最小的K个数.例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,. class Solution { public: ...

  5. TestNG套件测试(二)

    在xml中指定要运行的整个包来执行套件测试 <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE ...

  6. java容器(数组和集合)内元素的排序问题

    package com.janson.day20180827; import java.util.*; /** * java中容器内对象的排序可以通过Collections.sort()和Arrays ...

  7. eclipse 中导入 MyBatis 的源码

    (1)选中 Mybatis-3.2.2.jar ,右击,在弹出的快捷菜单中选择 “Properties” 选项,进入属性界面. (2)进入属性界面后,选中 “Java  Source Attachme ...

  8. Diango REST framework 视图继承图

  9. python3.x Day1 菜单程序练习

    三级菜单: 1. 运行程序输出第一级菜单 2. 选择一级菜单某项,输出二级菜单,同理输出三级菜单 3. 菜单数据保存在文件中 4. 让用户选择是否要退出 5. 有返回上一级菜单的功能 类定义:menu ...

  10. python3的dict

    dict1 = {getlistUrl:getlistData,getskuUrl:getskuData, approveUrl:approveData, approvedlistUrl:approv ...