第一个一眼就A的容斥题!

这个显然是容斥的经典问题------错排,首先考虑没有固定的情况,设\( D_n \)为\( n \)个数字的错排方案数。

\[D_n=n!-\sum_{t=1}^{n}(-1)^{t-1}\sum_{i_1<i_2<...<i_t}(n-t)!
\]

\[D_n=n!+\sum_{t=1}^{n}(-1)^tC_{n}^{t}(n-t)!
\]

\[D_n=n!+\sum(-1)^t\frac{n!}{t!}
\]

推到这一步就可以了,然后观察数据范围显然是要线性预处理,于是计算递推式:

\[D_{(n+1)}=(n+1)!+\sum_{t=1}^{n+1}(-1)^t\frac{(n+1)!}{t!}
\]

\[D_{(n+1)}=(n+1)!+(n+1)\sum_{t=1}^{n+1}(-1)^t\frac{n!}{t!}
\]

\[D_{(n+1)}=(n+1)!+(n+1)(\sum_{t=1}^{n}(-1)^t\frac{n!}{t!}+(-1)^{n+1}\frac{n!}{(n+1)!})
\]

\[D_{(n+1)}=(n+1)!+(n+1)\sum_{t=1}^{n}(-1)^t\frac{n!}{t!}+(-1)^{n+1}
\]

\[D_{(n+1)}=(n+1)(n!+(n+1)\sum_{t=1}^{n}(-1)^t\frac{n!}{t!})+(-1)^{n+1}
\]

\[D_{(n+1)}=(n+1)D_n+(-1)^{n+1}
\]

\[D_i=i*D_{i-1}+(-1)^i
\]

然后考虑有\( m \)的限制,就相当于\( m \)个数字固定,剩下\( n-m \)个数字错排,直接从预处理的\( D \)里面查即可,最后乘上选出\( m \)个固定位的方案数,对组合数预处理阶乘、逆元。由此可得答案为:

\[ans=D_{(n-m)}*C_{n}^{m}
\]

这东西推起来真刺激

#include<iostream>
#include<cstdio>
using namespace std;
const long long N=1000005,mod=1e9+7;
long long T,n,m,inv[N],fac[N],cp[N];
int read()
{
int r=0;
char p=getchar();
while(p>'9'||p<'0')
p=getchar();
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r;
}
long long ksm(long long a,long long b)
{
long long r=1ll;
while(b)
{
if(b&1)
r=r*a%mod;
a=a*a%mod;
b>>=1;
}
return r;
}
long long C(long long n,long long m)
{
return fac[n]*inv[n-m]%mod*inv[m]%mod;
}
int main()
{
fac[0]=1;
for(long long i=1;i<=N-5;i++)
fac[i]=fac[i-1]*i%mod;
inv[N-5]=ksm(fac[N-5],mod-2);
for(long long i=N-6;i>=0;i--)
inv[i]=inv[i+1]*(i+1)%mod;
cp[0]=1;//这里的cp数组即是上文提到的D(cuopai 23333)
for(long long i=1;i<=N-5;i++)
cp[i]=(i*cp[i-1]+((i&1)?-1:1))%mod;
T=read();
while(T--)
{
n=read(),m=read();
printf("%lld\n",(cp[n-m]*C(n,m)%mod+mod)%mod);
}
return 0;
}

bzoj 4517: [Sdoi2016]排列计数【容斥原理+组合数学】的更多相关文章

  1. BZOJ 4517: [Sdoi2016]排列计数 [容斥原理]

    4517: [Sdoi2016]排列计数 题意:多组询问,n的全排列中恰好m个不是错排的有多少个 容斥原理强行推♂倒她 $恰好m个不是错排 $ \[ =\ \ge m个不是错排 - \ge m+1个不 ...

  2. Bzoj 4517: [Sdoi2016]排列计数(排列组合)

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MB Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ...

  3. BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 911  Solved: 566[Submit][Status ...

  4. 数学(错排):BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 693  Solved: 434[Submit][Status ...

  5. BZOJ 4517: [Sdoi2016]排列计数 错排公式

    4517: [Sdoi2016]排列计数 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4517 Description 求有多少种长度为 ...

  6. BZOJ 4517: [Sdoi2016]排列计数 错排+逆元

    4517: [Sdoi2016]排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i, ...

  7. BZOJ 4517: [Sdoi2016]排列计数(组合数学)

    题面 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m ...

  8. BZOJ.4517.[SDOI2016]排列计数(错位排列 逆元)

    题目链接 错位排列\(D_n=(n-1)*(D_{n-1}+D_{n-2})\),表示\(n\)个数都不在其下标位置上的排列数. 那么题目要求的就是\(C_n^m*D_{n-m}\). 阶乘分母部分的 ...

  9. BZOJ 4517: [Sdoi2016]排列计数 错排 + 组合

    从 $n$ 个数中选 $m$ 个不错排,那就是说 $n-m$ 个数是错排的. 用组合数乘一下就好了. Code: #include <cstdio> #include <algori ...

随机推荐

  1. html5 拖拽元素

    利用html5实现元素的拖拽,让拖动元素在指定的容器中拖动. 注意点:1.被拖元素要设置拖动属性.draggable="true" 2.容器元素要设置阻止默认事件处理 实现效果图如 ...

  2. 解决maven Generating project in Interactive mode

    在idea建一个基于maven结构的web项目时,cmd输出卡死在Generating project in Interactive mode不动了 用命令mvn archetype:generate ...

  3. ffm算法

    www.csie.ntu.edu.tw/~cjlin/papers/ffm.pdf  读书笔记 The effect of feature conjunctions(组合特征) is difficul ...

  4. iOS中MRC和ARC混编

    1. 在targets的build phases选项下Compile Sources下选择,不使用arc编译的文件.双击它.输入 -fno-objc-arc 就可以(这个类就能够使用MRC模式) 2. ...

  5. [Bash] Move and Copy Files and Folders with Bash

    In this lesson we’ll learn how to move and rename files (mv) and copy (cp) them. Move index.html to ...

  6. Java中常见的排序算法

    这是我摘取的一段英文资料.我认为学习算法之前,对各种排序得有个大致的了解: Sorting algorithms are an important part of managing data. At ...

  7. js 判断对象中所有属性是否为空

    测试: var obj = {a:"123",b:""}; for(var key in obj){ if(!obj[key]) return; } 函数封装: ...

  8. js获取get传递的值

    <script language="javascript" src="js/jquery-1.9.0.min.js"></script> ...

  9. A + B Problem II(杭电1002)

    /*A + B Problem II Problem Description I have a very simple problem for you. Given two integers A an ...

  10. Error 99 connecting to 192.168.3.212:6379. Cannot assign requested address

    Error 99 connecting to 192.168.3.212:6379. Cannot assign requested address Redis - corelation betwee ...