题目描述

给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数。

输入输出格式

输入格式:

输入文件名为factor.in。

共一行,包含5 个整数,分别为 a ,b ,k ,n ,m,每两个整数之间用一个空格隔开。

输出格式:

输出共1 行,包含一个整数,表示所求的系数,这个系数可能很大,输出对10007 取模后的结果。

输入输出样例

输入样例#1:

1 1 3 1 2
输出样例#1:

3

说明

【数据范围】

对于30% 的数据,有 0 ≤k ≤10 ;

对于50% 的数据,有 a = 1,b = 1;

对于100%的数据,有 0 ≤k ≤1,000,0≤n, m ≤k ,且n + m = k ,0 ≤a ,b ≤1,000,000。

noip2011提高组day2第1题

二项式定理: (x+y)^k=Σ(t=1,2,..,k) C(k,t)*x^t*y^(k-t)

此处带入x=ax,y=ay,即可用公式直接算出对应项系数

 /*by SilverN*/
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
const int mod=;
const int mxn=;
int c[mxn][mxn];
void init(){
for(int i=;i<mxn;i++)c[i][]=;
for(int i=;i<mxn;i++)
for(int j=;j<mxn;j++)
c[i][j]=(c[i-][j-]+c[i-][j])%mod;
return;
}
int main(){
int a,b,k,n,m;
init();
scanf("%d%d%d%d%d",&a,&b,&k,&n,&m);
a%=mod;b%=mod;
int tmp=c[k][n];
for(int i=;i<=n;i++) tmp=(tmp*a)%mod;
for(int i=;i<=m;i++) tmp=(tmp*b)%mod;
cout<<tmp<<endl;
return ;
}

[NOIP2011] 洛谷P1313 计算系数的更多相关文章

  1. 洛谷P1313 计算系数【快速幂+dp】

    P1313 计算系数 题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别 ...

  2. 洛谷P1313 计算系数

    P1313 计算系数 题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别 ...

  3. 洛谷 P1313 计算系数 解题报告

    P1313 计算系数 题目描述 给定一个多项式\((by+ax)^k\),请求出多项式展开后\(x^n*y^m\)项的系数. 输入输出格式 输入格式: 共一行,包含5个整数,分别为\(a,b,k,n, ...

  4. 洛谷 P1313 计算系数 Label:杨辉三角形 多项式计算

    题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...

  5. 【数论】洛谷P1313计算系数

    题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...

  6. 洛谷 P1313 计算系数

    题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...

  7. 洛谷 P1313 计算系数 —— 水题

    题目:https://www.luogu.org/problemnew/show/P1313 不就是...C(k,n) * an * bm . 代码如下: #include<iostream&g ...

  8. 【洛谷P1313 计算系数】

    题目连接 #include<algorithm> #include<iostream> #include<cstring> #include<cstdio&g ...

  9. 洛谷 P1313 计算系数 (二项式定理)

    这道题正好复习了二项式定理 所以答案就是a^n * b^m * c(n, k) 然后注意一些细节 我一开始写组合数只写一行的组合数 即c[0] = 1; c[i] = c[i-1] * (n - i ...

随机推荐

  1. UVA 11324 The Largest Clique (强连通分量,dp)

    给出一个有向图,求一个最大的结点集合,任意两个点u,v.u可到达v或v可到达u. 一个强连通分量肯定一起选的.而且只能在一条路径上. 所以先找出所有scc,然后缩点找一条最大权的路径,按拓扑序跑DAG ...

  2. HDU 6041 I Curse Myself(点双联通加集合合并求前K大) 2017多校第一场

    题意: 给出一个仙人掌图,然后求他的前K小生成树. 思路: 先给出官方题解 由于图是一个仙人掌,所以显然对于图上的每一个环都需要从环上取出一条边删掉.所以问题就变为有 M 个集合,每个集合里面都有一堆 ...

  3. python基础一 day11 装饰器(1)

    接收的时候是聚合,调用的时候是打散     print(*args)本来在里面用的时候是用args,是一个元祖,加上一个 * 号,把元祖解包了(打散了). from functools import ...

  4. pandas小结

    pandas part I: # 总结: DataFrame.loc[0:5] 一共6行数据,而切片[0:5]只有5个数据 在对df的行数据删除后,有些index已缺失,此时用 iloc[]来按照位置 ...

  5. 基于IMD的包过滤防火墙原理与实现

    一.前言二.IMD中间层技术介绍三.passthru例程分析四.部分演示代码五.驱动编译与安装六. 总结 一.前言 前段时间,在安全焦点上看到了TOo2y朋友写的<基于SPI的数据报过滤原理与实 ...

  6. ExtJs如何使用自定义插件动态保存表头配置(隐藏或显示)

    关于保存列表表头的配置,一般我们不需要与后台交互,直接保存在 localStorage 中就能满足常规使用需求(需要浏览器支持). 直接上代码,插件: Ext.define('ux.plugin.Co ...

  7. RN服务

    https://facebook.github.io/react-native/docs/headless-js-android.html 当app在 后台运行 时,我们可以使用RN服务来同时地刷新数 ...

  8. webpack-dev-server proxy代理

    一个最简单的代理例子:index.html中有如下代码 fetch('/api/pub/article/list?pageSize=2').then((data)=>{ return data. ...

  9. cache支持三种pre-fetch方式:normal/pre-fetch1/pre-fetch2-way1/pre-fetch-way2

    1.normal fetch  ----fetch 1 cache line once 2. pre-fetch mode one ---- fetch 3 cache line once 3.pre ...

  10. biological clock

    '''this application aimed to cauculate people's biological block about emotional(28), energy(23),int ...