[luoguP2331] [SCOI2005]最大子矩阵(DP)
orz不会做。。。
一个好理解的做法(n^3*k):
分n=1和n=2两种情况考虑。
n=1时,预处理出前缀和sum[]。
设f[i][j]为到达第i格,已经放了j个子矩阵的最大和,
那么每次先把f[i][j]的值设为f[i-1][j](第i个元素不属于第j个子矩阵)
剩下的情况就是第i个元素属于第j个子矩阵了。
这时候用max(f[h-1][j-1]+(sum[i]-sum[h-1]), 1<=h<=i)更新f[i][j]的最大值,即枚举第j个子矩阵的起始点。
最终答案为f[m][k]。(边界条件为f[0][j]=0,包含空矩阵)
n=2时,预处理出分别列的前缀和sum1[],sum2[]。
设f[i][j][l]为在第1列到达第i格,第2列到达第j格,已经放了l个子矩阵的最大和,
那么每次先把f[i][j][l]的值设为max(f[i-1][j][l],f[i][j-1][l])(第i行第1列不属于子矩阵或第j行第2列不属于子矩阵,两者取较大值)
剩下的情况就是第i行第1列和第j行第2列都属于子矩阵了。
分两种情况:
一、第i行第1列和第j行第2列属于不同的子矩阵
分别枚举第i行第1列所在子矩阵的起始点和第j行第2列所在子矩阵的起始点并更新答案,
即用max(f[h-1][j][l-1]+(sum1[i]-sum1[h-1]), 1<=h<=i)和max(f[i][h-1][l-1]+(sum2[j]-sum2[h-1]),1<=h<=j)更新f[i][j]的最大值。
二、第i行第1列和第j行第2列属于同一子矩阵
仅当i==j时才包含这种情况(因为i和j要作为当前状态中子矩阵的末尾)。这时候这个子矩阵的列数必定为2。
还是一样枚举子矩阵的起始点,
在i==j的条件下用max(f[h-1][h-1][l-1]+(sum1[i]-sum1[h-1])+(sum2[j]-sum2[h-1]),1<=h<=i)更新答案。
最后答案为f[m][m][k](边界条件为f[0][0][l]=0,包含空矩阵)
#include <cstdio>
#define M 15
#define N 105
#define max(x, y) ((x) > (y) ? (x) : (y)) int n, m, K;
int sum[N][M];
int f[N][N][M], f0[N][M]; int main()
{
int i, j, k, l, x;
scanf("%d %d %d", &n, &m, &K);
for(i = 1; i <= n; i++)
for(j = 1; j <= m; j++)
{
scanf("%d", &x);
sum[i][j] = sum[i - 1][j] + x;
}
if(m == 1)
{
for(i = 1; i <= n; i++)
for(j = 1; j <= K; j++)
{
f0[i][j] = f0[i - 1][j];
for(k = 1; k <= i; k++)
f0[i][j] = max(f0[i][j], f0[k - 1][j - 1] + sum[i][1] - sum[k - 1][1]);
}
printf("%d\n", f0[n][K]);
return 0;
}
for(i = 1; i <= n; i++)
for(j = 1; j <= n; j++)
for(k = 1; k <= K; k++)
{
f[i][j][k] = max(f[i - 1][j][k], f[i][j - 1][k]);
for(l = 1; l <= i; l++)
f[i][j][k] = max(f[i][j][k], f[l - 1][j][k - 1] + sum[i][1] - sum[l - 1][1]);
for(l = 1; l <= j; l++)
f[i][j][k] = max(f[i][j][k], f[i][l - 1][k - 1] + sum[j][2] - sum[l - 1][2]);
if(i == j)
for(l = 1; l <= i; l++)
f[i][i][k] = max(f[i][i][k], f[l - 1][l - 1][k - 1] + sum[i][1] - sum[l - 1][1] + sum[i][2] - sum[l - 1][2]);
}
printf("%d\n", f[n][n][K]);
return 0;
}
还看到一个比较神的nk做法
O(Nk)时间复杂度0ms过
只有一列的不用说吧,我说下两列的
考虑每一行的状态
0 空出这一行
1 选择左边空出右边
2 选择右边空出左边
3 选择这一行两个(不作为一个矩阵,而是左边一列单独一个矩阵,右边单独一个矩阵)
4 选择这一行两个(两个一块作为一个矩阵的一部分)
定义f[i,j,k]为当前处理到第i行,已经选了j个矩阵,当前行状态为k的最大值(k为上面的0-4种状态)
如果空出这一行,则j不需要变化,直接继承上一行的各种状态的最大值
f[i][j][0]=max(f[i-1][j][0],f[i-1][j][1],f[i-1][j][2],f[i-1][j][3],f[i-1][j][4]);
如果选择左边空出右边,如果上一行的左边没有单独地选择成为矩阵的话(即选择1或3),则j需要包含新选择成为的矩阵(即这一行的左边的这个矩阵),
如果上一行为同时选择两列的为一个矩阵的状态,则只选择单独的左边是不能包含进去上一行的矩阵的,所以也应j-1(t1为这一行左边的值)
f[i][j][1]=max(f[i-1][j-1][0],f[i-1][j][1],f[i-1][j-1][2],f[i-1][j][3], f[i-1][j-1][4])+t1;
右边同理(t2为这一行右边的值)
f[i][j][2]=max(f[i-1][j-1][0],f[i-1][j-1][1],f[i-1][j][2],f[i-1][j][3], f[i-1][j-1][4])+t2;
选择两个分别单独作为矩阵,类似只选择左边或右边,不过是单独选左边和右边合并了下
f[i][j][3]=max(f[i-1][j-1][1],f[i-1][j-1][2],f[i-1][j][3])+t1+t2;
if(j>=2) f[i][j][3]=max(f[i][j][3],f[i-1][j-2][4]+t1+t2);
选择两个作为一个矩阵,则上一行除了可以接上的,都得j-1
f[i][j][4]=max(f[i-1][j-1][0],f[i-1][j-1][1],f[i-1][j-1][2],f[i-1][j-1][3],f[i-1][j][4])+t1+t2;
[luoguP2331] [SCOI2005]最大子矩阵(DP)的更多相关文章
- BZOJ 1084: [SCOI2005]最大子矩阵 DP
1084: [SCOI2005]最大子矩阵 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1084 Description 这里有一个n* ...
- 洛谷P2331 [SCOI2005]最大子矩阵 DP
P2331 [SCOI2005]最大子矩阵 题意 : 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 第一行为n,m,k(1≤n≤ ...
- bzoj1084: [SCOI2005]最大子矩阵 dp
这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 题解:m很小分类讨论,m==1时怎么搞都可以,m==2时,dp[i][j][k]表 ...
- 【BZOJ 1084】 1084: [SCOI2005]最大子矩阵 (DP)
1084: [SCOI2005]最大子矩阵 Description 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. Input 第 ...
- bzoj千题计划198:bzoj1084: [SCOI2005]最大子矩阵
http://www.lydsy.com/JudgeOnline/problem.php?id=1084 m=1: dp[i][j] 前i个数,选了j个矩阵的最大和 第i个不选:由dp[i-1][j] ...
- [Luogu 2331] [SCOI2005]最大子矩阵
[Luogu 2331] [SCOI2005]最大子矩阵 题目描述 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 输入输出格式 ...
- 1084: [SCOI2005]最大子矩阵
1084: [SCOI2005]最大子矩阵 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1325 Solved: 670[Submit][Stat ...
- BZOJ(6) 1084: [SCOI2005]最大子矩阵
1084: [SCOI2005]最大子矩阵 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3566 Solved: 1785[Submit][Sta ...
- [bzoj1084][SCOI2005]最大子矩阵_动态规划_伪·轮廓线dp
最大子矩阵 bzoj-1084 SCOI-2005 题目大意:给定一个n*m的矩阵,请你选出k个互不重叠的子矩阵使得它们的权值和最大. 注释:$1\le n \le 100$,$1\le m\le 2 ...
随机推荐
- Android属性系统简介
1.简介 在android 系统中,为统一管理系统的属性,设计了一个统一的属性系统.每个属性都有一个名称和值,他们都是字符串格式.属性被大量使用在Android系统中,用来记录系统设置或进程之间的信息 ...
- (四)mybatis之mybatis初了解
前言:终于到mybatis啦! Mybatis 前文有提到,Hibernate采用的是全表映射的方式,而这方式恰恰使得性能变得较差(https://www.cnblogs.com/NYfor201 ...
- mvc的model验证,ajaxhelper,验证机制语法
ajaxhelper: onsuccess是调用成功后显示方法,还有一个方法是调用前显示 model验证: 控件前端验证: 需要引入的JS 其中第二个是ajaxhelper的必须验证 后台的两个同名不 ...
- CAD交互绘制块引用对象(网页版)
主要用到函数说明: _DMxDrawX::DrawBlockReference 绘制块引用对象.详细说明如下: 参数 说明 DOUBLE dPosX 插入点的X坐标 DOUBLE dPosY 插入点的 ...
- linx vim 文件操作 ubuntu server 软件源
mv /etc/danted.conf /etc/danted.conf.bak sudo wget https://files.cnblogs.com/files/marklove/danted.t ...
- ios调试技巧
一.概述1.掌握调试技巧,调试技术最基本,最重要的调试手段包括:单步跟踪,断点,变量观察等.单步跟踪(Step)所谓单步跟踪是指一行一行地执行程序,每执行一行语句后就停下来等待指示,这样你就能够仔细了 ...
- 17条 Swift 最佳实践规范
本文由CocoaChina译者小袋子(博客)翻译自schwa的github主页原文作者:schwa 这是一篇 Swift 软件开发的最佳实践教程. 前言 这篇文章是我根据在 SwiftGraphics ...
- C++高精度乘法
#include <cstdio> #include <iostream> #include <algorithm> void highPrecision (int ...
- 【计算机网络】Session机制
1. Http请求中Session机制 先简单说一下HTTP请求中的Session机制:Session数据保存在服务器端,SessionID保存在客户端的Cookies中(关闭浏览器时过期).当客户端 ...
- Cookies和Session的区别和理解
Cookies和Session的区别和理解 cookie机制 Cookies是服务器在本地机器上存储的小段文本并随每一个请求发送至同一个服务器.IETF RFC 2965 HTTP State Man ...