题目大意

\(t\)(\(t\leq10^4\))组数据,给定\(n,m\)(\(n,m\leq10^6\))求

\[\sum_{x=1}^{n}\sum_{y=1}^{m}[gcd(x,y)=1]
\]

题解

这个人(点这里)讲得很清楚\(\color{white}{\text{shing太强了}}\)

代码
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<iomanip>
#include<iostream>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
#define rep(i,x,y) for(register int i=(x);i<=(y);++i)
#define dwn(i,x,y) for(register int i=(x);i>=(y);--i)
#define maxn 10000010
#define lim (maxn-10)
#define LL long long
using namespace std;
int read()
{
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)&&ch!='-')ch=getchar();
if(ch=='-')f=-1,ch=getchar();
while(isdigit(ch))x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return x*f;
}
void write(LL x)
{
if(x==0){putchar('0'),putchar('\n');return;}
int f=0;char ch[20];
if(x<0)putchar('-'),x=-x;
while(x)ch[++f]=x%10+'0',x/=10;
while(f)putchar(ch[f--]);
putchar('\n');
return;
}
int t,n,m,p[maxn],no[maxn],mu[maxn],cnt;
LL f[maxn];
int main()
{
no[1]=mu[1]=1;
rep(i,2,lim)
{
if(!no[i])p[++cnt]=i,mu[i]=-1;
for(int j=1;j<=cnt&&i*p[j]<=lim;j++)
{
no[i*p[j]]=1;
if(i%p[j]==0){mu[i*p[j]]=0;break;}
mu[i*p[j]]=-mu[i];
}
}
rep(i,1,cnt)for(int j=p[i];j<=lim;j+=p[i])f[j]+=mu[j/p[i]];
rep(i,1,lim)f[i]+=f[i-1];
t=read();
while(t--)
{
n=read(),m=read();
if(n>m)swap(n,m);LL ans=0;
for(int l=1,r=0;l<=n;l=r+1)r=min(n/(n/l),m/(m/l)),ans+=(LL)(n/l)*(LL)(m/l)*(f[r]-f[l-1]);
write(ans);
}
return 0;
}

并不对劲的bzoj2820:p2257:YY的GCD的更多相关文章

  1. 【BZOJ2820】YY的GCD(莫比乌斯反演)

    [BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{ ...

  2. 【BZOJ2820】YY的GCD

    [BZOJ2820]YY的GCD Description 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的( ...

  3. 洛谷 P2257 YY的GCD

    洛谷 P2257 YY的GCD \(solution:\) 这道题完全跟[POI2007]ZAP-Queries (莫比乌斯反演+整除分块) 用的一个套路. 我们可以列出答案就是要我们求: \(ans ...

  4. P2257 YY的GCD

    P2257 YY的GCD 题目描述 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 k ...

  5. [Luogu P2257] YY的GCD (莫比乌斯函数)

    题面 传送门:洛咕 Solution 推到自闭,我好菜啊 显然,这题让我们求: \(\large \sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)\in prime]\) 根 ...

  6. 题解 P2257 YY的GCD

    P2257 YY的GCD 解题思路 果然数论的题是真心不好搞. 第一个莫比乌斯反演的题,好好推一下式子吧..(借鉴了blog) 我们要求的答案就是\(Ans=\sum\limits_{i=1}^{n} ...

  7. 【反演复习计划】【bzoj2820】YY的GCD

    这题跟2818一样的,只不过数据水一点,可以用多一个log的办法水过去…… 原题意思是求以下式子:$Ans=\sum\limits_{isprime(p)}\sum\limits_{i=1}^{a}\ ...

  8. 【BZOJ2820】YY的GCD [莫比乌斯反演]

    YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description 求1<=x<=N, ...

  9. BZOJ2820:YY的GCD——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=2820 Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x& ...

随机推荐

  1. Python 和 Flask实现RESTful services

    使用Flask建立web services超级简单. 当然,也有很多Flask extensions可以帮助建立RESTful services,但是这个例实在太简单了,不需要使用任何扩展. 这个we ...

  2. C. The Smallest String Concatenation-C++sort排序~~

    C. The Smallest String Concatenation time limit per test 3 seconds memory limit per test 256 megabyt ...

  3. Oracle 释放过度使用的Undo表空间

    故障现象:UNDO表空间越来越大,长此下去最终数据因为磁盘空间不足而崩溃: 问题分析:产生问题的原因主要以下两点: 1. 有较大的事务量让Oracle Undo自动扩展,产生过度占用磁盘空间的情况: ...

  4. 使用Windows系统远程连接Windows server服务器

    点击开始菜单->运行 (或者 windows+R) ,输入"mstsc"命令,  打开远程桌面连接对话框,输入你要连接的Windows server服务器的公网IP.  点击 ...

  5. 51nod1135 原根

    原根判定:$m>2$,$\varphi (m)$的不同素数是$q_1,q_2,……,q_s$,$(g,m)=1$,则$g$是$m$的一个原根的充要条件是$g^{\frac{\varphi(m)} ...

  6. 转 Python 字符串操作(string替换、删除、截取、复制、连接、比较、查找、包含、大小写转换、分割等)

    转自: http://www.cnblogs.com/huangcong/archive/2011/08/29/2158268.html 黄聪:Python 字符串操作(string替换.删除.截取. ...

  7. Nginx,Apache,Tomcat区别

    Nginx:一款能承受高并发的HTTP服务器,异步的,多个连接(万级别)可以对应一个进程,进行响应.基于事件驱动模型. Nginx优点:负载均衡.反向代理.处理静态文件优势. Apache:相对于Ng ...

  8. java、android拼音,中文姓名排序

    http://blog.sina.com.cn/s/blog_81a9aa7e0100tizj.html 在java或者是android编程的时候,我们经常要用到对姓名或者其他字符串排序,现在我写写自 ...

  9. LightOJ1094 - Farthest Nodes in a Tree(树的直径)

    http://lightoj.com/volume_showproblem.php?problem=1094 Given a tree (a connected graph with no cycle ...

  10. BZOJ——4195: [Noi2015]程序自动分析

    http://www.lydsy.com/JudgeOnline/problem.php?id=4195 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: ...