bzoj 1592: [Usaco2008 Feb]Making the Grade 路面修整【dp】
因为是单调不降或单调不升,所以所有的bi如果都是ai中出现过的一定不会变差
以递增为例,设f[i][j]为第j段选第i大的高度,预处理出s[i][j]表示选第i大的时,前j个 a与第i大的值的差的绝对值 的和。
转移显然是
\]
这样看起来是\( O(n^3) \)的,但是注意到s[i][j]固定
\]
这样就可以在处理i-1的时候求出mn[i-1][k]为前k个中最小的f[i-1][k]-s[i][k],所以时间复杂度变成了\( O(n^2) \),空间是可以用滚动数组压到\( O(n) \)的,但是方便起见(懒)就只写了\( O(n^2) \)的
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=2005,inf=(1<<30)-1+(1<<30);
int n,a[N],b[N],f[N][N],s[N][N],mn[N][N],ans=inf;
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
int main()
{
n=read();
for(int i=1;i<=n;i++)
a[i]=b[i]=read();
sort(b+1,b+1+n);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
s[i][j]=s[i][j-1]+abs(a[j]-b[i]);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
f[i][j]=mn[i-1][j]+s[i][j],mn[i][j]=min(f[i][j]-s[i+1][j],mn[i][j-1]);
for(int i=1;i<=n;i++)
ans=min(ans,f[i][n]);
for(int i=n;i>=1;i--)
for(int j=1;j<=n;j++)
f[i][j]=mn[i+1][j]+s[i][j],mn[i][j]=min(f[i][j]-s[i-1][j],mn[i][j-1]);
for(int i=1;i<=n;i++)
ans=min(ans,f[i][n]);
printf("%d\n",ans);
return 0;
}
bzoj 1592: [Usaco2008 Feb]Making the Grade 路面修整【dp】的更多相关文章
- BZOJ 1592: [Usaco2008 Feb]Making the Grade 路面修整( dp )
最优的做法最后路面的高度一定是原来某一路面的高度. dp(x, t) = min{ dp(x - 1, k) } + | H[x] - h(t) | ( 1 <= k <= t ) 表示前 ...
- BZOJ 1592: [Usaco2008 Feb]Making the Grade 路面修整
Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了 ...
- 1592: [Usaco2008 Feb]Making the Grade 路面修整
1592: [Usaco2008 Feb]Making the Grade 路面修整 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 428 Solv ...
- 【BZOJ 1592】[Usaco2008 Feb]Making the Grade 路面修整 dp优化之转移变状态
我们感性可证离散(不离散没法做),于是我们就有了状态转移的思路(我们只考虑单不减另一个同理),f[i][j]到了第i块高度为j的最小话费,于是我们就可以发现f[i][j]=Min(f[i-1][k]) ...
- 【BZOJ】1592: [Usaco2008 Feb]Making the Grade 路面修整
[算法]动态规划DP [题解] 题目要求不严格递增或不严格递减. 首先修改后的数字一定是原来出现过的数字,这样就可以离散化. f[i][j]表示前i个,第i个修改为第j个数字的最小代价,a表示排序后数 ...
- 【贪心】bzoj1592: [Usaco2008 Feb]Making the Grade 路面修整
贪心的经典套路:替换思想:有点抽象 Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也 就是说,高度上升与高度下降的路段不能 ...
- 2014.6.14模拟赛【bzoj1592】[Usaco2008 Feb]Making the Grade 路面修整
Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了 ...
- 【bzoj1592】[Usaco2008 Feb]Making the Grade 路面修整
FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了N段,N个整数A_1, ...
- BZOJ1592 POJ3666 [Usaco2008 Feb]Making the Grade 路面修整 左偏树 可并堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ3666 题目传送门 - BZOJ1592 题意概括 整条路被分成了N段,N个整数A_1, ... , ...
随机推荐
- 怎样用JMeter做接口测试?
本文介绍JMeter如何做web service测试,一般来说web服务,一般指的是HTTP请求相关的内容.这里就介绍一下如何利用JMeter做基于HTTP的web接口测试.接口也叫API(Appli ...
- Jmeter关联,正则表达式提取器使用2
正则表达式的用处很多,最基础的用法 1,断言 2,传参(关联) 例子 1.http请求 2正则表达式提取,想要提取列表列中id,一遍打开列表页 如果是1,每次就会取相同的值!匹配数字的权限高于模板$0 ...
- BNUOJ 26229 Red/Blue Spanning Tree
Red/Blue Spanning Tree Time Limit: 2000ms Memory Limit: 131072KB This problem will be judged on HDU. ...
- URAL 1297 求最长回文字符串
有种简单的方法,数组从左到右扫一遍,每次以当前的点为中心,只要左右相等就往左右走,这算出来的回文字符串是奇数长度的 还有偶数长度的回文字符串就是以当前扫到的点和它左边的点作为中心,然后往左右扫 这是O ...
- jquery判断单选按钮radio是否选中的方法
JQuery控制radio选中和不选中方法总结 一.设置选中方法 复制代码代码如下: $("input[name='名字']").get(0).checked=true; $(&q ...
- hdu - 1394 Minimum Inversion Number(线段树水题)
http://acm.hdu.edu.cn/showproblem.php?pid=1394 很基础的线段树. 先查询在更新,如果后面的数比前面的数小肯定会查询到前面已经更新过的值,这时候返回的sum ...
- 洛谷——P1458 顺序的分数 Ordered Fractions
P1458 顺序的分数 Ordered Fractions 题目描述 输入一个自然数N,对于一个最简分数a/b(分子和分母互质的分数),满足1<=b<=N,0<=a/b<=1, ...
- 使用URL Rewrite实现网站伪静态
下载urlwrite包 将urlrewrite-***.jar复制到web应用lib文件夹下 web.xml中配置URL Rewrite: 例: <filter> <filter-n ...
- Linux NFS服务器的安装与配置(转载)
一.NFS服务简介 NFS 是Network File System的缩写,即网络文件系统.一种使用于分散式文件系统的协定,由Sun公司开发,于1984年向外公布.功能是通过网络让不同的机器.不同的操 ...
- 008 frame relay
Router>en Router#config t Enter configuration commands, one per line. End with CNTL/Z. Router(co ...