洛谷 P2365 任务安排【dp】
其实是可以斜率优化的但是没啥必要
设st为花费时间的前缀和,sf为Fi的前缀和,f[i]为分组到i的最小花费
然后枚举j转移,考虑每次转移都是把j到i分为一组这样意味着j及之后的都要增加s的时间,同时增加这段的结束时间/*F,取min即可
#include<iostream>
#include<cstdio>
using namespace std;
const int N=5005,inf=1e9;
int n,s,st[N],sf[N],f[N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
int main()
{
n=read(),s=read();
for(int i=1;i<=n;i++)
st[i]=st[i-1]+read(),sf[i]=sf[i-1]+read();
for(int i=1;i<=n;i++)
f[i]=inf;
for(int i=1;i<=n;i++)
for(int j=1;j<=i;j++)
f[i]=min(f[i],f[j-1]+s*(sf[n]-sf[j-1])+st[i]*(sf[i]-sf[j-1]));
printf("%d\n",f[n]);
return 0;
}
洛谷 P2365 任务安排【dp】的更多相关文章
- 2018.07.09 洛谷P2365 任务安排(线性dp)
P2365 任务安排 题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间 ...
- 洛谷P2365 任务安排(斜率优化dp)
传送门 思路: 最朴素的dp式子很好考虑:设\(dp(i,j)\)表示前\(i\)个任务,共\(j\)批的最小代价. 那么转移方程就有: \[ dp(i,j)=min\{dp(k,j-1)+(sumT ...
- [洛谷P2365] 任务安排
洛谷题目链接:任务安排 题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时 ...
- [洛谷 P2365] 任务安排 (线性dp)
3月14日第二题!! 题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间 ...
- 洛谷P2365 任务安排 [解法二 斜率优化]
解法一:http://www.cnblogs.com/SilverNebula/p/5926253.html 解法二:斜率优化 在解法一中有这样的方程:dp[i]=min(dp[i],dp[j]+(s ...
- 洛谷P2365 任务安排 [解法一]
题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti.在每批任务开始 ...
- 洛谷 P2365 任务安排_代价提前计算 + 好题
最开始,笔者将状态 fif_{i}fi 定义为1到i的最小花费 ,我们不难得到这样的一个状态转移方程,即 fi=(sumti−sumtj+S+Costj)∗(sumfi−sumfj)f_{i}=(s ...
- 洛谷P2365/5785 任务安排 题解 斜率优化DP
任务安排1(小数据):https://www.luogu.com.cn/problem/P2365 任务安排2(大数据):https://www.luogu.com.cn/problem/P5785 ...
- 洛谷P1108 低价购买[DP | LIS方案数]
题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...
随机推荐
- Jmeter关联,正则表达式提取器使用1
Jmeter关联,正则表达式提取器使用 一.Jmeter关联的方式: Jmeter中关联可以在需要获取数据的请求上 右键-->后置处理器 选择需要的关联方式,如下图有很多种方法可以提取动态 ...
- 59. Spring Boot Validator校验【从零开始学Spring Boot】
大纲: (1) 入门例子: (2) 国际化: (3) 在代码中添加错误信息: (1) 入门例子: Validator主要是校验用户提交的数据的合理性的,比如是否为空了,密码长度是否大于6位,是否是纯数 ...
- 用PowerPoint中的VB实现课件中的智能交互
http://www.duxiushan.net/index.asp?xAction=xReadNews&NewsID=294 我们使用PPT的目的只有一个,即更好地达成“沟通.演说.汇报.讲 ...
- 【BZOJ3697】采药人的路径(点分治)
题意:采药人的药田是一个树状结构,每条路径上都种植着同种药材.采药人以自己对药材独到的见解,对每种药材进行了分类.大致分为两类,一种是阴性的,一种是阳性的.采药人每天都要进行采药活动.他选择的路径是很 ...
- codevs3285 转圈游戏
题目描述 Description n 个小伙伴(编号从 0 到 n-1)围坐一圈玩游戏.按照顺时针方向给 n 个位置编号,从0 到 n-1.最初,第 0 号小伙伴在第 0 号位置,第 1 号小伙伴在第 ...
- csu - 1538: Shopping (贪心)
http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1538 很奇妙的一个题,开始没有思路.问了别人才知道. 题目的意思可以理解成上图中,从0点开始向右走 ...
- c内存分配(转)
图示 C内存分配 程序代码区 存放函数体的二进制代码 全局数据区 全局变量和静态变量的存储是放在一起的.初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域. ...
- HashMap的工作原理以及代码实现,为什么要转换成红黑树?
原理参考:https://blog.csdn.net/striveb/article/details/84657326 总结: 为什么当桶中键值对数量大于8才转换成红黑树,数量小于6才转换成链表? 参 ...
- Ubuntu 16.04安装Ubuntu After Install工具实现常用软件批量安装
这个软件集成了常用且好用的软件,且只需要选择需要的软件之后自动安装好,不需要额外设置. 安装: sudo add-apt-repository ppa:thefanclub/ubuntu-after- ...
- JDBC示例(增删查改)
前提: 1.项目中引入MySQL的JAR包,POM参考如下配置: <!-- mysql-connector-java --> <!-- http://mvnrepository.co ...