传送门

首先不难设\(f[i][j]\)表示跳到\((i,j)\)的方案数,那么不难得到如下转移

\[f[i][j]=\sum\limits_{k=1}^{\frac n2}f[i-2k+1][j-1]+f[i-2k+1][j]+f[i-2k+1][j+1]
\]

然后维护两个前缀和\(s1,s2\),分别表示与当前列相差为偶数的前缀和以及与当前列相差为奇数的前缀和,那么可以这样转移

\[s1[i+1][j]=s2[i][j]+s1[i][j-1]+s1[i][j]+s1[i][j+1]
\]

\[s2[i+1][j]=s1[i][j]
\]

然而直接转移会T,我们考虑用矩阵乘法来优化。构造一个\(1*2n\)的矩阵表示答案,左边表示\(f[i]\),右边表示\(f[i-1]\),那么要构造一个\(2n*2n\)的转移矩阵满足乘上之后左边变为\(f[i+1]\),右边为\(f[i]\),那么大概是这么个东西(\(n=5\)的情况,图片网上偷的)



然后最后前缀和减一减就好了

//minamoto
#include<bits/stdc++.h>
#define R register int
#define fp(i,a,b) for(R i=a,T=b+1;i<T;++i)
#define fd(i,a,b) for(R i=a,T=b-1;i>T;--i)
using namespace std;
const int P=30011;
int n,m;
struct node{
int a[105][105];
node(){memset(a,0,sizeof(a));}
int *operator [](const R &x){return a[x];}
node operator *(node &b){
node res;
fp(i,1,n)fp(j,1,n)fp(k,1,n)
res[i][j]=(res[i][j]+a[i][k]*b[k][j])%P;
return res;
}
}I,A,B;
node ksm(node x,R y){
node res;fp(i,1,n)res[i][i]=1;
for(;y;y>>=1,x=x*x)if(y&1)res=res*x;
return res;
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d%d",&n,&m);
fp(i,1,n)I[i][i]=I[i+n][i]=I[i][i+n]=1;
fp(i,1,n-1)I[i+1][i]=I[i][i+1]=1;
n<<=1,A=ksm(I,m-2),B=A*I;
printf("%d\n",(B[1][n>>1]-A[1][n]+P)%P);
return 0;
}

P3990 [SHOI2013]超级跳马的更多相关文章

  1. 洛谷 P3990 [SHOI2013]超级跳马 解题报告

    P3990 [SHOI2013]超级跳马 题目描述 现有一个\(n\) 行 \(m\) 列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘. ...

  2. BZOJ 4417 Luogu P3990 [SHOI2013]超级跳马 (DP、矩阵乘法)

    题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4417 (luogu)https://www.luogu.org/prob ...

  3. Luogu P3990 [SHOI2013]超级跳马

    这道题还是一道比较不可做的矩阵题 首先我们先YY一个递推的算法:令f[i][j]表示走到第i行第j列时的方案数,那么有以下转移: f[i][j]=f[i-1][j-2*k+1]+f[i+1][j-2* ...

  4. [bzoj4417] [洛谷P3990] [Shoi2013] 超级跳马

    Description 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可 ...

  5. [BZOJ 4417][Shoi2013]超级跳马

    4417: [Shoi2013]超级跳马 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 379  Solved: 230[Submit][Status ...

  6. [题解][SHOI2013]超级跳马 动态规划/递推式/矩阵快速幂优化

    这道题... 让我见识了纪中的强大 这道题是来纪中第二天(7.2)做的,这么晚写题解是因为 我去学矩阵乘法啦啦啦啦啦对矩阵乘法一窍不通的童鞋戳链接啦 层层递推会TLE,正解矩阵快速幂 首先题意就是给你 ...

  7. BZOJ4417: [Shoi2013]超级跳马

    Description 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可 ...

  8. 【BZOJ4417】: [Shoi2013]超级跳马

    题目链接: 传送. 题解: 矩阵快速幂优化DP. 先考虑$nm^2$DP,设$f_{(i,j)}$表示从$1,1$到$i,j$的方案,显然这个方程和奇偶性有关,我们考虑某列的$i$同奇偶性的转移和奇偶 ...

  9. 【bzoj4417】[Shoi2013]超级跳马 矩阵乘法

    题目描述 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可行的跳法.   ...

随机推荐

  1. 九度oj 题目1057:众数

    题目1057:众数 时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:9744 解决:3263 题目描述: 输入20个数,每个数都在1-10之间,求1-10中的众数(众数就是出现次数最多的数, ...

  2. parse XML & js

    parse XML & js how to parse xml data in js? https://stackoverflow.com/questions/17604071/parse-x ...

  3. Linux下查看硬盘UUID和修改硬盘UUID(转)

    查看硬盘UUID: 1. ls -l /dev/disk/by-uuid 2. blkid /dev/sda5 修改硬盘UUID: 1.新建和改变分区的UUID sudo uuidgen | xarg ...

  4. 根据身份证号,取得行政区划的Javascript实现

    原文:http://www.cnblogs.com/baibaluo/archive/2011/06/03/2071255.html#2585076 项目里需要一个根据身份证号,取得发证地行政区划的的 ...

  5. 物理内存、虚拟内存、buffers、cached、共享内存、swap

    物理内存: 实际使用的内存: 虚拟内存: 虚拟内存是操作系统内核为了对进程地址空间进行管理(process address space management)而精心设计的一个逻辑意义上的内存空间概念. ...

  6. Spring PropertyPlaceholderConfigure 载入配置文件

    在開始这篇博客的主题之前,我们先来了解一下Spring配置文件以及包括的相关内容. watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2 ...

  7. C#如何开发多语言支持的Winform程序

    C# Winform项目多语言实现(支持简/繁/英三种语言)有很多种方案实现多语言,我在这里介绍一种最简单最容易理解的,作为教学材题应该从通俗易懂入手.在写这篇文章之前,本来想用枚举窗体对象成员的方式 ...

  8. ym——Android怎样支持多种屏幕

    转载请注明本文出自Cym的博客(http://blog.csdn.net/cym492224103),谢谢支持! 原文链接:http://developer.android.com/guide/pra ...

  9. SQL Server游标 C# DataTable.Select() 筛选数据 什么是SQL游标? SQL Server数据类型转换方法 LinQ是什么? SQL Server 分页方法汇总

    SQL Server游标   转载自:http://www.cnblogs.com/knowledgesea/p/3699851.html. 什么是游标 结果集,结果集就是select查询之后返回的所 ...

  10. Unity 5.x 导入教学Demo

    前言 小巫也来玩Unity3D了.以后会把学习的一些过程博客记录下来,方大家也方便自己学习和查看.本篇博客介绍怎样在Unityclient中导入Assert Store中下载的项目资源,方便我们进一步 ...