Luogu P5027 【Barracuda】(高斯消元)
祭一下第一道独立做出来的高斯消元(虽然在各大佬看来都是水题...)
首先这道题给了你n+1个一次方程,n个未知数
其中有一个方程是错误的
求解在合法的前提下最大的未知数是多少...
显然高斯消元...
关注到\(n≤100\)所以\(n^4\)的算法是极限
高斯消元复杂度是\(n^3\)所以我们可以暴力枚举那个方程是错误的
之后判断合法性即可...
总之也不是很难啊,关键是不要忘记illegal...刚开始程序末尾的illegal忘了然后就Subtask2 WA了一个点...
直接看代码直观一点呢
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#define writeln(x) write(x),puts("")
#define writep(x) write(x),putchar(' ')
using namespace std;
inline int read(){
int ans=0,f=1;char chr=getchar();
while(!isdigit(chr)){if(chr=='-') f=-1;chr=getchar();}
while(isdigit(chr)){ans=(ans<<3)+(ans<<1)+chr-48;chr=getchar();}
return ans*f;
}void write(int x){
if(x<0) putchar('-'),x=-x;
if(x>9) write(x/10);
putchar(x%10+'0');
}const double eps=1e-11;
int n,w[105],p[105][105],tot,ANS,lst[105],lst_ans;
double a[105][105],ans[105];
inline void cmax(int &a,int b){if(a<b) a=b;}
inline void Gauss(){//高斯消元+回代
for(int maxn,i=1;i<=n;i++){
maxn=i;
for(int j=i+1;j<=n;j++) if(fabs(a[maxn][i])<fabs(a[j][i])) maxn=j;
swap(a[maxn],a[i]);
double div=a[i][i];
for(int j=i;j<=n;j++) a[i][j]/=div;
for(int j=i+1;j<=n;j++){
div=a[j][i];
for(int k=i;k<=n+1;k++) a[j][k]-=div*a[i][k];
}
}ans[n]=a[n][n+1];
for(int i=n-1;i>=1;--i){
ans[i]=a[i][n+1];
for(int j=i+1;j<=n;j++)
ans[i]-=a[i][j]*ans[j];
}
}
int main(){
n=read();
for(int i=1,t;i<=n+1;i++){
t=p[i][0]=read();
for(int j=1;j<=t;j++) p[i][j]=read();
w[i]=read();
}int ppp=0;
for(int wr=1;wr<=n+1;wr++){//第wr(ong)次出现错误答案
tot=0;memset(a,0,sizeof(a));
for(int i=1;i<=n+1;i++)
if(i!=wr){
++tot,a[tot][n+1]=w[i];
for(int j=1;j<=p[i][0];j++)a[tot][p[i][j]]=1;
}
Gauss();//构造方程+高斯消元
//------------------------------------------------------------------------
ANS=0;tot=0;int ff=0;
for(int i=1;i<=n;i++){
int flag=0;
for(int j=1;j<=n;j++)
if(fabs(a[i][j])>eps) flag=1;
if(flag==0) {ff=1;break;}
}if(ff) continue;//检查1_唯一解
//------------------------------------------------------------------------
for(int i=1;i<=n;i++)
if(fabs(ans[i]-(int)ans[i])<eps&&ans[i]>0)
lst[i]=(int)ans[i];
else {ff=1;break;}//检查2_整数
if(ff) continue;
for(int i=1;i<=n;i++) cmax(ANS,lst[i]);
for(int i=1;i<=n;i++) if(ans[i]==ANS) ++tot,ff=i;//检查3_最大值唯一
if(tot>1) continue;
//------------------------------------------------------------------------
if(ppp){puts("illegal");return 0;}//多种可能方案
lst_ans=ff;ppp=1;
}
if(!ppp) puts("illegal");//没有可能方案
else writeln(lst_ans);
return 0;
}
Luogu P5027 【Barracuda】(高斯消元)的更多相关文章
- 【Luogu】P3389高斯消元模板(矩阵高斯消元)
题目链接 高斯消元其实是个大模拟qwq 所以就着代码食用 首先我们读入 ;i<=n;++i) ;j<=n+;++j) scanf("%lf",&s[i][j]) ...
- luogu P2962 [USACO09NOV]灯Lights 高斯消元
目录 题目链接 题解 题目链接 luogu P2962 [USACO09NOV]灯Lights 题解 可以折半搜索 map合并 复杂度 2^(n / 2)*logn 高斯消元后得到每个点的翻转状态 爆 ...
- Luogu P3389 高斯消元
https://www.luogu.com.cn/problem/P3389 主元消元法[模板] 高斯消元是解决多元线性方程组的方法,再学习它之前,先引入一个东西--行列式 行列式的性质: 这里我们只 ...
- 【Luogu】P3211XOR和路径(高斯消元)
题目链接 唉我个ZZ…… 首先考虑到异或是可以每一位分开算的 好的以后再碰见位运算题我一定先往按位开车上想 然后设f[i]为从i点出发到终点是1的概率 高斯消元解方程组即可. #include< ...
- 【Luogu】P4035球形空间产生器(高斯消元)
题目链接 水比题,把圆方程展开减一下把平方都减掉半径的平方也减掉,高斯消元即可. 然后我只输出两位小数,爆了两次零.我好菜啊. #include<cstdio> #include<c ...
- 【Luogu】P2447外星千足虫(高斯消元)
题目链接 高斯消元解%2意义下的方程,Bitset优化一下. 在消的过程中就能顺便把有解的第一问求出来,记录一下访问过的最大行. #include<cstdio> #include< ...
- 【Luogu】P3317重建(高斯消元+矩阵树定理)
题目链接 因为这个专门跑去学了矩阵树定理和高斯消元qwq 不过不是很懂.所以这里只放题解 玫葵之蝶的题解 某未知dalao的矩阵树定理 代码 #include<cstdio> #inclu ...
- Luogu P2447 [SDOI2010]外星千足虫 高斯消元
链接 给出的条件是异或类型的方程,可以直接用bitset优化高斯消元. 至于求K,在高斯消元时记录用到的最大的方程的编号即可. 代码: // luogu-judger-enable-o2 #inclu ...
- LUOGU P4783 【模板】矩阵求逆(高斯消元)
传送门 解题思路 用高斯消元对矩阵求逆,设\(A*B=C\),\(C\)为单位矩阵,则\(B\)为\(A\)的逆矩阵.做法是把\(B\)先设成单位矩阵,然后对\(A\)做高斯消元的过程,对\(B\)进 ...
随机推荐
- NYOJ-1188并集与交集,STL的灵活运用!
并集与交集 时间限制:1000 ms | 内存限制:65535 KB 难度:2 描述 给你两个字符串的集合A和B,让你求这两个字符串集合的并集和交集,按字典序排序后输出. 然后又给出给出两个字符串 ...
- CF-697B Barnicle与691C Exponential notation
无聊写两个题解吧,上午做比赛拉的,感触很多! B. Barnicle time limit per test 1 second memory limit per test 256 megabytes ...
- 【bzoj1965】[Ahoi2005]SHUFFLE 洗牌 - 快速幂
为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动. 由于Samuel星球相当遥远,科学家们要在飞船中度过相当长的一段时间,小联提议用扑克牌打发长途旅行 ...
- Flask(1):基本示例、配置文件、路由、请求和响应、模板渲染
Flask的特点: - pip install flask - 短小精悍.可扩展性强的 web框架 注意:上下文管理机制 - 依赖 wsgi:werkzeug Flask的简单示例: from fla ...
- Eclipse配置SVN的几种方法及使用详情
此文章对Myeclipse同样适用. 一.在Eclipse里下载Subclipse插件 方法一:从Eclipse Marketplace里面下载 具体操作:打开Eclipse --> Help ...
- Linux下汇编语言学习笔记33 ---
这是17年暑假学习Linux汇编语言的笔记记录,参考书目为清华大学出版社 Jeff Duntemann著 梁晓辉译<汇编语言基于Linux环境>的书,喜欢看原版书的同学可以看<Ass ...
- android中webview的实现
设置从当前页面打开链接,而不是跳转到系统默认浏览器打开: webview.setWebViewClient(new WebViewClient(){ @Override public boolean ...
- POJ 2456_Aggressive cows
题意: 给定N个位置,把C头牛分别放入,求相邻两头牛的最大距离. 分析: 即为求两头牛之间最小距离的最大值.二分搜索答案. 代码: #include<iostream> #include& ...
- Linux下tomcat的catalina.out屏蔽
修改catalina.sh ,找到下面的位置: if [ -z "$CATALINA_OUT" ] ; then#CATALINA_OUT="$CATALINA_BASE ...
- Eclipse错误:Syntax error on tokens, delete these tokens问题解决
错误:Syntax error on tokens, delete these tokens 出现这样的错误一般是括号.中英文字符.中英文标点.代码前面的空格,尤其是复制粘贴的代码,去掉即可.