题目传送门

题意:简单来说就是sn = sn-1 + sn-2递推而来,求其中所有c字符的:∑i<j:sn[i..i+2]=sn[j..j+2]=‘‘cff"(j−i) mod 530600414

分析:一开始觉得很难下手,类似于斐波那契数列,最后的数字会很大,不能正常求解。想到试试打表找规律,结果并没有找到什么规律。。。最后也没想出什么来。赛后才恍然大悟,这是递推题,拿来别人的思路:

串长度len,串中字符c的个数num,串中所有字符c的位置之和sum,串中所有字符c之间的距离之和ans。

我们可以得到公式

一、node[i].len = node[i-1].len + node[i-2].len;

二、node[i].num = node[i-1].num + node[i-2].num;

三、node[i].sum = node[i-1].sum + node[i-2].sum + node[i-2].len*node[i-1].num。

四、node[i].ans = node[i-1].ans + node[i-2].ans+(node[i-2].len*node[i-2].num-node[i-2].sum)*node[i-1].num+node[i-1].sum*node[i-2].num;

用例子解释一下第三点和第四点:s4 = "ffcff", s5 = "cffffcff", s6 = s4 + s5 = "ffcff" + "cffffcff",第三点:在s5中,c的下标为1,6,在s6中,下标为1+, 6+, 所以能够解释:node[i-2].len*node[i-1].num。第四点:因为[i-2].ans和[i-1].ans已经知道各自串c的位置和以及距离差的和,所以能够解释node[i-1].sum + node[i-2].sum,node[i-1].ans + node[i-2].ans,那么剩下的是怎么得到s5与s4的距离差的和。不考虑字符串内部的部分:[6].ans = ( + 5 - 3) + ( + 5 - 3),红色代表-node[i-2].sum)*node[i-1].num,绿色代表node[i-1].sum*node[i-2].num,剩下的代表(node[i-2].len*node[i-2].num *node[i-1].num。不管怎么样,我是懂了的~

总结:这题目很好,很少接触这样的递推类型。另外,出题人的秀恩爱(表白?)的方式也让本人大开眼界,如果没看过Contest Clarifications,不知能发现多少亮点:)

#include <cstdio>
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
#include <string>
using namespace std; typedef long long ll;
const int N = 201314 + 10;
const int INF = 0x3f3f3f3f;
const int MOD = 530600414;
struct DP {
ll len, num, sum, ans;
}dp[N]; void solve(void) {
dp[3].len = 3; dp[3].num = 1; dp[3].sum = 1; dp[3].ans = 0;
dp[4].len = 5; dp[4].num = 1; dp[4].sum = 3; dp[4].ans = 0;
for (int i=5; i<=201314; ++i) {
dp[i].len = (dp[i-2].len + dp[i-1].len) % MOD;
dp[i].num = (dp[i-2].num + dp[i-1].num) % MOD;
dp[i].sum = (dp[i-2].sum + dp[i-1].sum + (dp[i-2].len * dp[i-1].num) % MOD) % MOD;
dp[i].ans = (dp[i-2].ans + dp[i-1].ans + ((dp[i-2].len*dp[i-2].num-dp[i-2].sum)%MOD*dp[i-1].num)%MOD + dp[i-2].num * dp[i-1].sum) % MOD;
}
} int main(void) {
solve ();
int T, cas = 0; scanf ("%d", &T);
while (T--) {
int n; scanf ("%d", &n);
printf ("Case #%d: %I64d\n", ++cas, dp[n].ans);
} return 0;
}

其他乱七八糟的,留个念~

id: 0

i:1 len:1 sz:1 ans:0

id:

i:2 len:2 sz:0 ans:0

id: 0

i:3 len:3 sz:1 ans:0

id: 2

i:4 len:5 sz:1 ans:0

id: 0 5
5
i:5 len:8 sz:2 ans:5 id: 2 5 10
35
i:6 len:13 sz:3 ans:16 id: 0 5 10 13 18
5535
i:7 len:21 sz:5 ans:88 id: 2 5 10 13 18 23 26 31
3535535
i:8 len:34 sz:8 ans:352 id: 0 5 10 13 18 23 26 31 34 39 44 47 52
553553535535
i:9 len:55 sz:13 ans:1552 id: 2 5 10 13 18 23 26 31 34 39 44 47 52 57 60 65 68 73 78 81 86
35355353553553535535
i:10 len:89 sz:21 ans:6512 id: 0 5 10 13 18 23 26 31 34 39 44 47 52 57 60 65 68 73 78 81 86 89 94 99 102 10
7 112 115 120 123 128 133 136 141
553553535535535355353553553535535
i:11 len:144 sz:34 ans:27753 i:12 len:233 sz:55 ans:117392 i:13 len:377 sz:89 ans:497728 i:14 len:610 sz:144 ans:2107952 i:15 len:987 sz:233 ans:8930608 i:16 len:1597 sz:377 ans:37829456 i:17 len:2584 sz:610 ans:160251245 i:18 len:4181 sz:987 ans:148231586 i:19 len:6765 sz:1597 ans:222584546 i:20 len:10946 sz:2584 ans:507962972 i:21 len:17711 sz:4181 ans:132054082 i:22 len:28657 sz:6765 ans:505562166 i:23 len:46368 sz:10946 ans:31951635 i:24 len:75025 sz:17711 ans:102724512 i:25 len:121393 sz:28657 ans:442982018
“cff”  

“I've sent Fang Fang around 201314 text messages in almost 5 years. Why can't she make sense of what I mean?”

“Love does not delight in evil but rejoices with the truth.
It always protects, always trusts, always hopes, always perseveres.” “(j−i) mod 530600414,” “113 1205 199312 199401 201314”

  

  

递推DP HDOJ 5459 Jesus Is Here的更多相关文章

  1. 递推DP HDOJ 5328 Problem Killer

    题目传送门 /* 递推DP: 如果a, b, c是等差数列,且b, c, d是等差数列,那么a, b, c, d是等差数列,等比数列同理 判断ai-2, ai-1, ai是否是等差(比)数列,能在O( ...

  2. 递推DP HDOJ 5092 Seam Carving

    题目传送门 /* 题意:从上到下,找最短路径,并输出路径 DP:类似数塔问题,上一行的三个方向更新dp,路径输出是关键 */ #include <cstdio> #include < ...

  3. 递推DP HDOJ 5389 Zero Escape

    题目传送门 /* 题意:把N个数分成两组,一组加起来是A,一组加起来是B,1<=A,B<=9,也可以全分到同一组.其中加是按照他给的规则加,就是一位一位加,超过一位数了再拆分成一位一位加. ...

  4. 递推DP HDOJ 5375 Gray code

    题目传送门 /* 题意:给一个串,只能是0,1,?(0/1).计算格雷码方法:当前值与前一个值异或,若为1,可以累加a[i],问最大累加值 DP:dp[i][0/1]表示当前第i位选择0/1时的最大分 ...

  5. 递推DP URAL 1167 Bicolored Horses

    题目传送门 题意:k个马棚,n条马,黑马1, 白马0,每个马棚unhappy指数:黑马数*白马数,问最小的unhappy值是多少分析:dp[i][j] 表示第i个马棚放j只马的最小unhappy值,状 ...

  6. 递推DP URAL 1017 Staircases

    题目传送门 /* 题意:给n块砖头,问能组成多少个楼梯,楼梯至少两层,且每层至少一块砖头,层与层之间数目不能相等! 递推DP:dp[i][j] 表示总共i块砖头,最后一列的砖头数是j块的方案数 状态转 ...

  7. 递推DP URAL 1260 Nudnik Photographer

    题目传送门 /* 递推DP: dp[i] 表示放i的方案数,最后累加前n-2的数字的方案数 */ #include <cstdio> #include <algorithm> ...

  8. 递推DP URAL 1353 Milliard Vasya's Function

    题目传送门 /* 题意:1~1e9的数字里,各个位数数字相加和为s的个数 递推DP:dp[i][j] 表示i位数字,当前数字和为j的个数 状态转移方程:dp[i][j] += dp[i-1][j-k] ...

  9. 递推DP URAL 1119 Metro

    题目传送门 /* 题意:已知起点(1,1),终点(n,m):从一个点水平或垂直走到相邻的点距离+1,还有k个抄近道的对角线+sqrt (2.0): 递推DP:仿照JayYe,处理的很巧妙,学习:) 好 ...

随机推荐

  1. 手把手编写自己的PHPMVC框架

    1 什么是MVC MVC模式(Model-View-Controller)是软件工程中的一种软件架构模式,把软件系统分为三个基本部分:模型(Model).视图(View)和控制器(Controller ...

  2. Android app身体质量指数(BMI)

    针对中国人的标准身高体重来測算,提示您身体的健康状况. 提示您是否应该锻炼.节食或者补充营养等.第一时间知道您的健康状况. 下载地址:http://android.myapp.com/myapp/de ...

  3. Mac OS用vmvare安装多节点kubernetes

    参考网址 https://kubernetes.io/docs/setup/ 1.安装vmvare 2.下载ubuntu镜像(可以不要界面,可以下载server版大约900M,否则下载desktop版 ...

  4. 【bzoj3210】花神的浇花集会

    将(x,y)转化成(x+y,x-y)可以将切比雪夫距离转化成曼哈顿距离(自己推一推) A.B的切比雪夫距离就是A‘.B‘曼哈顿距离的一半. 那么可以将x.y分离处理,排序中位数即可. 注意如果最后选的 ...

  5. 主线程 view

    参考https://blog.csdn.net/u011001142/article/details/50912358

  6. Java IO、BIO、NIO、BIO

    一.什么是IO/NIO: IO:即BIO(Blocking IO):面向流的.同步阻塞式IO:(JDK1.4之前唯一的选择) NIO:面向缓冲的.同步非阻塞式IO:三大核心部分:Selector.Ch ...

  7. sjtu oj 1201. SuperXOR

    Description Pangzi recently realized that bitwise XOR operation is just an addition without carries. ...

  8. POJ 2017 Speed Limit (直叙式的简单模拟 编程题目 动态属性很少,难度小)

                                                                                                      Sp ...

  9. poj 1094 Sorting It All Out 解题报告

    题目链接:http://poj.org/problem?id=1094 题目意思:给出 n 个待排序的字母 和 m 种关系,问需要读到第 几 行可以确定这些字母的排列顺序或者有矛盾的地方,又或者虽然具 ...

  10. ComboBox联动 (AJAX BS实现)

    //从webservice中取数据ajax            Ext.Ajax.request({                url: 'WebService.asmx/GetComboxFi ...