sklearn.metrics.roc_curve
官方网址:http://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics 首先认识单词:metrics: ['mɛtrɪks] : 度量‘指标 curve : [kɝv] : 曲线 这个方法主要用来计算ROC曲线面积的; sklearn.metrics.roc_curve(y_true, y_score, pos_label=None, sample_weight=None, drop_intermediate=True) Parameters : y_true : 数组,shape = [样本数] 在范围{0,1}或{-1,1}中真正的二进制标签。如果标签不是二进制的,则应该显式地给出pos_label y_score : 数组, shape = [样本数] 目标得分,可以是积极类的概率估计,信心值,或者是决定的非阈值度量(在某些分类器上由“decision_function”返回)。 pos_label:int or str, 标签被认为是积极的,其他的被认为是消极的。 sample_weight: 顾名思义,样本的权重,可选择的 drop_intermediate: boolean, optional (default=True) 是否放弃一些不出现在绘制的ROC曲线上的次优阈值。这有助于创建更轻的ROC曲线 Returns : fpr : array, shape = [>2] 增加假阳性率,例如,i是预测的假阳性率,得分>=临界值[i] tpr : array, shape = [>2] 增加真阳性率,例如,i是预测的真阳性率,得分>=临界值[i]。 thresholds : array, shape = [n_thresholds] 减少了用于计算fpr和tpr的决策函数的阈值。阈值[0]表示没有被预测的实例,并且被任意设置为max(y_score) + 1 要弄明白ROC的概念可以参考 :https://www.deeplearn.me/1522.html 介绍ROC曲线的两个重要指标: 真阳性率 = true positive rate = TPR = TP/ (TP + FN) 可以这样理解:真阳性率就是在标准的阳性(标准的阳性就等于真阳性加假阴性=TP + FN)中,同时被检测为阳性的概率,有点绕,自行理解。 假阳性率 = false positive rate = FPR = FP / (FP+TN) 可以这样理解:假阳性就是在标准的阴性(标准的阴性就等于假阳性加真阴性=FP + TN)中,被检测为阳性的概率。很好理解的,本来是阴性,检测成了阳性的概率就是假阳性率呗。 ROC曲线就由这两个值绘制而成。接下来进入sklearn.metrics.roc_curve实战,找遍了网络也没找到像我一样解释这么清楚的。 import numpy as np
from sklearn import metrics
y = np.array([1, 1, 2, 2])
scores = np.array([0.1, 0.4, 0.35, 0.8])
fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2)
y 就是标准值,scores 是每个预测值对应的阳性概率,比如0.1就是指第一个数预测为阳性的概率为0.1,很显然,y 和 socres应该有相同多的元素,都等于样本数。pos_label=2 是指在y中标签为2的是标准阳性标签,其余值是阴性。
所以在标准值y中,阳性有2个,后两个;阴性有2个,前两个。 接下来选取一个阈值计算TPR/FPR,阈值的选取规则是在scores值中从大到小的以此选取,于是第一个选取的阈值是0.8 scores中大于阈值的就是预测为阳性,小于的预测为阴性。所以预测的值设为y_=(0,0,0,1),0代表预测为阴性,1代表预测为阳性。可以看出,真阴性都被预测为阴性,真阳性有一个预测为假阴性了。 FPR = FP / (FP+TN) = 0 / 0 + 2 = 0 TPR = TP/ (TP + FN) = 1 / 1 + 1 = 0.5 thresholds = 0.8 我们验证一下结果 print(fpr[0],tpr[0],thresholds[0]) 同代码结果一致,其余的就不演示了,剩下的阈值一次等于 0.4 0.35 0.1 自行验证。 最后结果等于 print(fpr,'\n',tpr,'\n',thresholds) 全部代码
import numpy as np
from sklearn import metrics
y = np.array([1, 1, 2, 2])
scores = np.array([0.1, 0.4, 0.35, 0.8])
fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2)
print(fpr,'\n',tpr,'\n',thresholds)
---------------------
作者:z智慧
来源:CSDN
原文:https://blog.csdn.net/u014264373/article/details/80487766
版权声明:本文为博主原创文章,转载请附上博文链接!
sklearn.metrics.roc_curve的更多相关文章
- sklearn.metrics.roc_curve使用说明
roc曲线是机器学习中十分重要的一种学习器评估准则,在sklearn中有完整的实现,api函数为sklearn.metrics.roc_curve(params)函数. 官方接口说明:http://s ...
- sklearn.metrics中的评估方法
https://www.cnblogs.com/mindy-snail/p/12445973.html 1.confusion_matrix 利用混淆矩阵进行评估 混淆矩阵说白了就是一张表格- 所有正 ...
- sklearn.metrics中的评估方法介绍(accuracy_score, recall_score, roc_curve, roc_auc_score, confusion_matrix)
1 accuracy_score:分类准确率分数是指所有分类正确的百分比.分类准确率这一衡量分类器的标准比较容易理解,但是它不能告诉你响应值的潜在分布,并且它也不能告诉你分类器犯错的类型.常常误导初学 ...
- Python Sklearn.metrics 简介及应用示例
Python Sklearn.metrics 简介及应用示例 利用Python进行各种机器学习算法的实现时,经常会用到sklearn(scikit-learn)这个模块/库. 无论利用机器学习算法进行 ...
- [sklearn]性能度量之AUC值(from sklearn.metrics import roc_auc_curve)
原创博文,转载请注明出处! 1.AUC AUC(Area Under ROC Curve),即ROC曲线下面积. 2.AUC意义 若学习器A的ROC曲线被学习器B的ROC曲线包围,则学习器B的性能优于 ...
- sklearn.metrics.mean_absolute_error
注意多维数组 MAE 的计算方法 * >>> from sklearn.metrics import mean_absolute_error >>> y_true ...
- 量化预测质量之分类报告 sklearn.metrics.classification_report
classification_report的调用为:classification_report(y_true, y_pred, labels=None, target_names=None, samp ...
- sklearn 下距离的度量 —— sklearn.metrics
1. pairwise from sklearm.metrics.pairwise import pairwise_distance 计算一个样本集内部样本之间的距离: D = np.array([n ...
- sklearn.metrics import precision_recall_fscore_support
二分类/多分类/多标签 对于二分类来说,必须定义一些matrics(f1_score,roc_auc_score).在这些case中,缺省只评估正例的label,缺省的正例label被标为1(可以通过 ...
随机推荐
- vue demo todo-list
html <input type='text' v-model="todoItem" v-on:keyup.enter='addItem'> <ul> &l ...
- bootstrap 表单元素、按钮、链接的禁用
在Bootstra中,表单元素,按钮通过在标签内设置 disabled 或 disabled="disabled" 可以禁用表单元素,按钮.链接需要加入class="di ...
- JSP中传递数据出现的乱码问题
1. <%@ page language="java" import="java.util.*" contentType="text/html; ...
- LeetCode.893-特殊相等字符串组(Groups of Special-Equivalent Strings)
这是悦乐书的第344次更新,第368篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第209题(顺位题号是893). You are given an array A of ...
- 《windows核心编程系列》十七谈谈dll
DLL全称dynamic linking library.即动态链接库.广泛应用与windows及其他系统中.因此对dll的深刻了解,对计算机软件开发专业人员来说非常重要. windows中所有API ...
- Python学习规划
短时间踏实而高效的学习python 知乎:如何系统的学习python 简书:最全的python学习手册 目录 Python编程语言 python视频教程 Python神经网络算法与深度学习视频教程人工 ...
- js中实现json格式的转换
function person(id,name,age){ this.id=id; this.name=name; this.age=age; } var p=new person(1001,'tom ...
- 转如何升级oracle版本?(11.2.0.1至11.2.0.4)
dbua from 11.2,0.2 to 11.2.0.4 need 2hours 升级结果: 步骤名 日志文件名 状态 升级前操作 PreUpgrade.l ...
- 421 Maximum XOR of Two Numbers in an Array 数组中两个数的最大异或值
给定一个非空数组,数组中元素为 a0, a1, a2, … , an-1,其中 0 ≤ ai < 231 .找到 ai 和aj 最大的异或 (XOR) 运算结果,其中0 ≤ i, j < ...
- 转】在Ubuntu中安装Redis
不多说,直接上干货! 原博文出自于: http://blog.fens.me/category/%E6%95%B0%E6%8D%AE%E5%BA%93/ 感谢! 在Ubuntu中安装Redis R利剑 ...