hdu1025 Constructing Roads In JGShining's Kingdom(二分+dp)
转载请注明出处:http://blog.csdn.net/u012860063
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1025
Half of these cities are rich in resource (we call them rich cities) while the others are short of resource (we call them poor cities). Each poor city is short of exactly one kind of resource and also each rich city is rich in exactly one kind of resource.
You may assume no two poor cities are short of one same kind of resource and no two rich cities are rich in one same kind of resource.
With the development of industry, poor cities wanna import resource from rich ones. The roads existed are so small that they're unable to ensure the heavy trucks, so new roads should be built. The poor cities strongly BS each other, so are the rich ones. Poor
cities don't wanna build a road with other poor ones, and rich ones also can't abide sharing an end of road with other rich ones. Because of economic benefit, any rich city will be willing to export resource to any poor one.
Rich citis marked from 1 to n are located in Line I and poor ones marked from 1 to n are located in Line II.
The location of Rich City 1 is on the left of all other cities, Rich City 2 is on the left of all other cities excluding Rich City 1, Rich City 3 is on the right of Rich City 1 and Rich City 2 but on the left of all other cities ... And so as the poor ones.
But as you know, two crossed roads may cause a lot of traffic accident so JGShining has established a law to forbid constructing crossed roads.
For example, the roads in Figure I are forbidden.
In order to build as many roads as possible, the young and handsome king of the kingdom - JGShining needs your help, please help him. ^_^
the end of file.
You should tell JGShining what's the maximal number of road(s) can be built.
2
1 2
2 1
3
1 2
2 3
3 1
Case 1:
My king, at most 1 road can be built. Case 2:
My king, at most 2 roads can be built.
注意区分road和roads
思路:
/*如果存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7。能够看出来它的LIS长度为5。
以下一步一步试着找出它。
我们定义一个序列B,然后令 i = 1 to 9 逐个考察这个序列。
此外。我们用一个变量Len来记录如今最长算到多少了
首先。把d[1]有序地放到B里。令B[1] = 2,就是说当仅仅有1一个数字2的时候。长度为1的LIS的最小末尾是2。这时Len=1
然后,把d[2]有序地放到B里,令B[1] = 1,就是说长度为1的LIS的最小末尾是1,d[1]=2已经没用了。非常easy理解吧。
这时Len=1
接着。d[3] = 5,d[3]>B[1]。所以令B[1+1]=B[2]=d[3]=5,就是说长度为2的LIS的最小末尾是5,非常easy理解吧。这时候B[1..2]
= 1, 5,Len=2
再来,d[4] = 3,它正好加在1,5之间。放在1的位置显然不合适。由于1小于3,长度为1的LIS最小末尾应该是1,这样非常easy推知,长度为2的LIS最小末尾是3。于是能够把5淘汰掉,这时候B[1..2]
= 1, 3,Len = 2
继续,d[5] = 6。它在3后面,由于B[2] = 3, 而6在3后面,于是非常easy能够推知B[3] = 6, 这时B[1..3]
= 1, 3, 6,还是非常easy理解吧? Len = 3 了噢。
第6个, d[6] = 4,你看它在3和6之间,于是我们就能够把6替换掉,得到B[3] = 4。
B[1..3] = 1,
3, 4, Len继续等于3
第7个, d[7] = 8,它非常大,比4大,嗯。于是B[4] = 8。Len变成4了
第8个, d[8] = 9,得到B[5] = 9,嗯。
Len继续增大,到5了。
最后一个, d[9] = 7,它在B[3] = 4和B[4] = 8之间,所以我们知道,最新的B[4] =7。B[1..5]
= 1, 3, 4, 7, 9,Len = 5。
于是我们知道了LIS的长度为5。
!!!!! 注意。这个1,3,4,7,9不是LIS,它仅仅是存储的相应长度LIS的最小末尾。有了这个末尾,我们就能够一个一个地插入数据。尽管最后一个d[9]
= 7更新进去对于这组数据没有什么意义,可是假设后面再出现两个数字 8 和 9,那么就能够把8更新到d[5], 9更新到d[6]。得出LIS的长度为6。
然后应该发现一件事情了:在B中插入数据是有序的,并且是进行替换而不须要挪动——也就是说,我们能够使用二分查找。将每个数字的插入时间优化到O(logN)~~~~~于是算法的时间复杂度就减少到了O(NlogN)~
注意 把第一列的城市看成固定的,求出还有一列数的最长递增序列
用ans[x]保存rich city的标号y,dp[i]存放的是长度为i的序列的末尾最小的那个ans[i]值
dp[]的长度就是最多的道路数目。
设辅助数组为dp[]。
能够知道最短len=1;此时dp[1]=ans[1]。若第二个元素要大于第一个,把它增加dp[2]。len++,
否则就更新dp[1]。len不加。分析第三元素就能够推广到n个了,这样就减少分析问题的难度了。
假设第三个大于第二个元素就增加dp[3]中,假设小于第二个。直接更新dp[2]。
要推断left>len(left代表dp数组中更新元素的位置)这样2==2,不须要加。
假设小于第一个,更新dp[1],len=2>1。不须要加。
通过进一步分析:我们发现,dp数组中是递增的。它含有的元素的个数是当前上升子序列的个数(除0),
当有数据不是增加dp数组中,要更新前面的(用二分法找).而它不会影响结果,
由于dp数组中值(除0以外)的个数并没添加,要使len 添加,有两种可能:
1:后面有元素大于dp数组的最后一个元素就有(left>len)。
2:被还有一个元素连续更新,且更新到left>len,意思就是说:选出还有一元素它能比当前元素构造的上升子序列要多。
这样就能选出最长上升子序列了。
*/
代码例如以下:
#include <cstdio>
#include <cstring>
const int maxn = 500047;
int dp[maxn], ans[maxn], n;
int LIS()
{
dp[1] = ans[1]; //dp[i]用来存储长度为i时的最小值
int len = 1;
for (int i = 2; i <= n; i++)
{
int left = 1, right = len;
while (left <= right)//二分查找应该更新的元素
{
int m = (left + right)/2;
if (ans[i] > dp[m])
left = m + 1;
else
right = m - 1;
}
dp[left] = ans[i];
if (left > len)
len = left;
}
return len;
}
int main()
{
int x, y,k = 1;
while (~scanf("%d", &n))
{
for (int i = 0; i < n; i++)
{ scanf("%d%d", &x, &y);
ans[x] = y;
}
memset(dp, 0, sizeof(dp));
int len = LIS();
printf("Case %d:\n",k);
if(len==1)
printf("My king, at most 1 road can be built.");
else
printf("My king, at most %d roads can be built.",len);
printf("\n\n");
k++;
}
return 0;
}
hdu1025 Constructing Roads In JGShining's Kingdom(二分+dp)的更多相关文章
- hdu1025 Constructing Roads In JGShining's Kingdom (nlogn的LIS)
题目链接 第一次写nlogn复杂度的LIS,纪念一下. 题目意思是说.有两条平行线.两条平行线都有n个城市,都是从左到右标记为1--n,一条线上是富有城市,一个是贫穷城市.输入n.接下来有n行,p,r ...
- HDU 1025 Constructing Roads In JGShining's Kingdom (DP)
Problem Description JGShining's kingdom consists of 2n(n is no more than 500,000) small cities which ...
- HDU ACM 1025 Constructing Roads In JGShining's Kingdom->二分求解LIS+O(NlogN)
#include<iostream> using namespace std; //BFS+优先队列(打印路径) #define N 500005 int c[N]; int dp[N]; ...
- hdu-1025 Constructing Roads In JGShining's Kingdom(二分查找)
题目链接: Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others) Memory Li ...
- DP 60题 -2 HDU1025 Constructing Roads In JGShining's Kingdom
Problem Description JGShining's kingdom consists of 2n(n is no more than 500,000) small cities which ...
- LIS问题---HDU1025 Constructing Roads In JGShining's Kingdom
发现这个说的比较通俗: 假设存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7,可以看出来它的LIS长度为5.下面一步一步试着找出它.我们定义一个序列B,然后令 i = 1 to 9 ...
- Constructing Roads In JGShining's Kingdom(HDU1025)(LCS序列的变行)
Constructing Roads In JGShining's Kingdom HDU1025 题目主要理解要用LCS进行求解! 并且一般的求法会超时!!要用二分!!! 最后蛋疼的是输出格式的注 ...
- [ACM] hdu 1025 Constructing Roads In JGShining's Kingdom (最长递增子序列,lower_bound使用)
Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65 ...
- HDU 1025 Constructing Roads In JGShining's Kingdom(二维LIS)
Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65 ...
随机推荐
- table鼠标滑过变颜色
table鼠标滑过变颜色 添加 table tr:hover{background-color: #eee;} 设置鼠标滑过行背景变色,重新刷新浏览器页面. 一般设置灰色,eee
- Chrome 引起的蓝屏 MULTIPLE_IRP_COMPLETE_REQUESTS (44)
如果你使用Chrome的时候出现经常性蓝屏, 可以试试这么做, 或许问题就解决了.
- 迅为iTOP-4412物联网开发板入门学习高手进阶项目开发超树莓派
免费视频教程: 为初学者精心录制的整套视频教程全部免费,随IT技术发展而不断增添的视频教程仍然免费!一支有经验的工程师团队会始终成为您的后盾. 项目实战---全开源: 手机远程控制开发板 门禁系统 W ...
- Django 跨域CORS
现在,前端与后端分处不同的域名,我们需要为后端添加跨域访问的支持. 我们使用CORS来解决后端对跨域访问的支持. 使用django-cors-headers扩展 参考文档https://github. ...
- PHP 中 include() 与 require() 的区别说明
引用文件的方法有两种:require 及 include.两种方式提供不同的使用弹性. require 的使用方法如 require("MyRequireFile.php"); . ...
- CAD参数绘制直径标注(网页版)
主要用到函数说明: _DMxDrawX::DrawDimDiametric 绘制一个直径标注.详细说明如下: 参数 说明 DOUBLE dChordPointX 在被标注的曲线上的第一个点X值 DOU ...
- Hibernate修改操作 删除操作 查询操作 增加操作 增删改查 Hibernate增删查改语句
我用的数据库是MySQL,实体类叫User public class User { private Integer uid; private String username; private Stri ...
- 201621123079《Java程序设计》第1周学习总结
第1周-Java基本概念 1.本周学习总结 第一次上课接触java,了解了java的由来和历史,还有JCP,JSP的概念,并学会如何建立一个java文件和运行过程.感觉java比之前学习的数据结构更高 ...
- find -print0和xargs -0原理及用法
平常我们经常把find和xargs搭配使用,例如: find . -name "*.txt" | xargs rm 但是这个命令如果遇到文件名里有空格或者换行符,就会出错.因为xa ...
- MyBaties 异常之 java.lang.UnsupportedOperationException
sql语句 对应的接口为: 包错误的详情为: java.lang.UnsupportedOperationException 原因: resultType返回的是集合中的元素类型,而不是集合本身 SQ ...