bzoj 2257[Jsoi2009]瓶子和燃料 数论/裴蜀定理
题目
Description
jyy就一直想着尽快回地球,可惜他飞船的燃料不够了。
有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子来换。jyy
的飞船上共有 N个瓶子(1<=N<=1000) ,经过协商,火星人只要其中的K 个 。 jyy
将 K个瓶子交给火星人之后,火星人用它们装一些燃料给 jyy。所有的瓶子都没有刻度,只
在瓶口标注了容量,第i个瓶子的容量为Vi(Vi 为整数,并且满足1<=Vi<=1000000000 ) 。
火星人比较吝啬,他们并不会把所有的瓶子都装满燃料。他们拿到瓶子后,会跑到燃料
库里鼓捣一通,弄出一小点燃料来交差。jyy当然知道他们会来这一手,于是事先了解了火
星人鼓捣的具体内容。火星人在燃料库里只会做如下的3种操作:1、将某个瓶子装满燃料;
2、将某个瓶子中的燃料全部倒回燃料库;3、将燃料从瓶子a倒向瓶子b,直到瓶子b满
或者瓶子a空。燃料倾倒过程中的损耗可以忽略。火星人拿出的燃料,当然是这些操作能
得到的最小正体积。
jyy知道,对于不同的瓶子组合,火星人可能会被迫给出不同体积的燃料。jyy希望找
到最优的瓶子组合,使得火星人给出尽量多的燃料。
Input
第1行:2个整数N,K,
第2..N 行:每行1个整数,第i+1 行的整数为Vi
Output
仅1行,一个整数,表示火星人给出燃料的最大值。
Sample Input
3
4
4
Sample Output
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<vector>
using namespace std;
int n,k,ans=,step;
int cnt[]; bool cmp(int a,int b)
{
return a>b;
} void apart(int x)
{
for(int i=;i*i<=x;i++)
{
if(x%i==)
{
cnt[++step]=i;
if(x/i!=i) cnt[++step]=x/i;
}
}
}
int main()
{
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++)
{
int x=;
scanf("%d",&x);
apart(x);
}
sort(cnt+,cnt+step+,cmp);
for(int i=;i<=step;i++)
{
if(cnt[i]==cnt[i-])
{
ans++;
if(ans==k)
{
printf("%d",cnt[i]);
return ;
}
}
else ans=;
} return ;
}
在数论中,裴蜀定理是一个关于最大公约数(或最大公约式)的定理。裴蜀定理得名于法国数学家艾蒂安·裴蜀,说明了对任何整数a、b和它们的最大公约数d,关于未知数x和y的线性丢番图方程(称为裴蜀等式):
ax + by = m
有解当且仅当m是d的倍数。裴蜀等式有解时必然有无穷多个整数解,每组解x、y都称为裴蜀数,可用辗转相除法求得。
例如,12和42的最大公因子是6,则方程12x + 42y = 6有解。事实上有(-3)×12 + 1×42 = 6及4×12 + (-1)×42 = 6。
特别来说,方程 ax + by = 1 有解当且仅当整数a和b互素。
裴蜀等式也可以用来给最大公约数定义:d其实就是最小的可以写成ax + by形式的正整数。这个定义的本质是整环中“理想”的概念。因此对于多项式整环也有相应的裴蜀定理。
bzoj 2257[Jsoi2009]瓶子和燃料 数论/裴蜀定理的更多相关文章
- bzoj 2257: [Jsoi2009]瓶子和燃料【裴蜀定理+gcd】
裴蜀定理:若a,b是整数,且gcd(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立. 所以最后能得到的最小燃料书就是gcd,所以直 ...
- 【bzoj2257】[Jsoi2009]瓶子和燃料 扩展裴蜀定理+STL-map
题目描述 给出 $n$ 个瓶子和无限的水,每个瓶子有一定的容量.每次你可以将一个瓶子装满水,或将A瓶子内的水倒入B瓶子中直到A倒空或B倒满.从中选出 $k$ 个瓶子,使得能够通过这 $k$ 个瓶子凑出 ...
- BZOJ2257 [Jsoi2009]瓶子和燃料 【裴蜀定理】
题目链接 BZOJ2257 题解 由裴蜀定理我们知道,若干的瓶子如此倾倒最小能凑出的是其\(gcd\) 现在我们需要求出\(n\)个瓶子中选出\(K\)个使\(gcd\)最大 每个数求出因数排序即可 ...
- [BZOJ 2257][JSOI2009]瓶子和燃料 题解(GCD)
[BZOJ 2257][JSOI2009]瓶子和燃料 Description jyy就一直想着尽快回地球,可惜他飞船的燃料不够了. 有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子 ...
- 洛谷 P4571 BZOJ 2257 [JSOI2009]瓶子和燃料
bzoj题目链接 上面hint那里是选择第2个瓶子和第3个瓶子 Time limit 10000 ms Memory limit 131072 kB OS Linux Source Jsoi2009 ...
- BZOJ 2257: [Jsoi2009]瓶子和燃料【数论:裴蜀定理】
2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1326 Solved: 815[Submit][Stat ...
- BZOJ 2257: [Jsoi2009]瓶子和燃料 裴蜀定理
2257: [Jsoi2009]瓶子和燃料 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...
- BZOJ-2257:瓶子和燃料(裴蜀定理)
jyy就一直想着尽快回地球,可惜他飞船的燃料不够了. 有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子来换.jyy的飞船上共有 N个瓶子(1<=N<=1000) ,经过 ...
- bzoj 2257: [Jsoi2009]瓶子和燃料
#include<cstdio> #include<iostream> #include<algorithm> #include<cmath> usin ...
随机推荐
- Linux--进程组、会话、守护进程(转)
http://www.cnblogs.com/forstudy/archive/2012/04/03/2427683.html 进程组 一个或多个进程的集合 进程组ID: 正整数 两个函数 getpg ...
- BCD工具类(8421)
目录 1.BCD介绍 (1)BCD码(Binary-Coded Decimal)亦称二进码十进数.用4位二进制数来表示1位十进制数中的0~9这10个数码.用二进制编码的十进制代码. (2)BCD码可分 ...
- 转: Android 软件开发之如何使用Eclipse Debug调试程序详解(七)
转自: http://www.uml.org.cn/mobiledev/201110092.asp Android 软件开发之如何使用Eclipse Debug调试程序详解(七) 发布于2011- ...
- CentOS5 忘记root密码的解决办法
方法/步骤 1 开机启动的时候,按“E”进入如下界面. 2 选择相应的内核,再次按“E”,出现下图,选择第二项,再次按“E”键 3 在尾部加:“空格+single”(如图),Enter.图如下: ...
- convnet源代码解析(一):基础准备
Jeremy Lin ConvNet是一个基于GPU实现的卷积神经网络开源码(C++11).是由多伦多大学的Geoffrey Hinton深度学习团队编写的,它的最初版本号是Hinton的学生Alex ...
- ubuntu hadoop伪分布式部署
环境 ubuntu hadoop2.8.1 java1.8 1.配置java1.8 2.配置ssh免密登录 3.hadoop配置 环境变量 配置hadoop环境文件hadoop-env.sh core ...
- mouseout和mouseover、mouseenter和mouseleave
在前端开发中经常会碰到当鼠标放到一个元素上时会弹出你一个元素,鼠标离开那个弹出元素后隐藏.这类效果一般要用到一些鼠标事件,一类是mouseout和mouseover,另一类是mouseen ...
- 哨兵和docker容器
1,redis哨兵的配置 redis-6379配置文件内容如下 cat redis-6379.conf port 6379 daemonize yes logfile "6379.log&q ...
- P1439 排列LCS问题
P1439 排列LCS问题 56通过 220提交 题目提供者yeszy 标签二分动态规划 难度普及+/提高 提交该题 讨论 题解 记录 最新讨论 暂时没有讨论 题目描述 给出1-n的两个排列P1和P2 ...
- 卸载ubuntu自带openJDK,更改成自己的JDK版本
你已经成功把jdk1.6.0_03 安装到 /usr/java,并且配置好了系统环境变量 执行 # java -version 时就是 显示jdk1.4.3,是因为你的linux系统有默认的jdk;执 ...