hbase学习 rowKey的设计-4
访问hbase table中的行,只有三种方式:
1 通过单个row key访问
2 通过row key的range
3 全表扫描
Hadoop Sequence File
文中可能涉及到的API:
Hadoop/HDFS:http://hadoop.apache.org/common/docs/current/api/
HBase: http://hbase.apache.org/apidocs/index.html?overview-summary.html
Begin!
HBase的查询实现只提供两种方式:
1、按指定RowKey获取唯一一条记录,get方法(org.apache.hadoop.hbase.client.Get)
2、按指定的条件获取一批记录,scan方法(org.apache.hadoop.hbase.client.Scan)
实现条件查询功能使用的就是scan方式,scan在使用时有以下几点值得注意:
1、scan可以通过setCaching与setBatch方法提高速度(以空间换时间);
2、scan可以通过setStartRow与setEndRow来限定范围。范围越小,性能越高。
通过巧妙的RowKey设计使我们批量获取记录集合中的元素挨在一起(应该在同一个Region下),可以在遍历结果时获得很好的性能。
3、scan可以通过setFilter方法添加过滤器,这也是分页、多条件查询的基础。
下面举个形象的例子:
我们在表中存储的是文件信息,每个文件有5个属性:文件id(long,全局唯一)、创建时间(long)、文件名(String)、分类名(String)、所有者(User)。
我们可以输入的查询条件:文件创建时间区间(比如从20120901到20120914期间创建的文件),文件名(“中国好声音”),分类(“综艺”),所有者(“浙江卫视”)。
假设当前我们一共有如下文件:
内容列表 ID CreateTime Name Category UserID 1 2 3 4 5 6 7 8 9 10
20120902 | 中国好声音第1期 | 综艺 | 1 |
20120904 | 中国好声音第2期 | 综艺 | 1 |
20120906 | 中国好声音外卡赛 | 综艺 | 1 |
20120908 | 中国好声音第3期 | 综艺 | 1 |
20120910 | 中国好声音第4期 | 综艺 | 1 |
20120912 | 中国好声音选手采访 | 综艺花絮 | 2 |
20120914 | 中国好声音第5期 | 综艺 | 1 |
20120916 | 中国好声音录制花絮 | 综艺花絮 | 2 |
20120918 | 张玮独家专访 | 花絮 | 3 |
20120920 | 加多宝凉茶广告 | 综艺广告 | 4 |
这里UserID应该对应另一张User表,暂不列出。我们只需知道UserID的含义:
1代表 浙江卫视; 2代表 好声音剧组; 3代表 XX微博; 4代表 赞助商。
调用查询接口的时候将上述5个条件同时输入find(20120901,20121001,"中国好声音","综艺","浙江卫视")。
此时我们应该得到记录应该有第1、2、3、4、5、7条。第6条由于不属于“浙江卫视”应该不被选中。
我们在设计RowKey时可以这样做:采用UserID + CreateTime + FileID组成rowKey,这样既能满足多条件查询,又能有很快的查询速度。
需要注意以下几点:
1、每条记录的RowKey,每个字段都需要填充到相同长度。假如预期我们最多有10万量级的用户,则userID应该统一填充至6位,如000001,000002...
2、结尾添加全局唯一的FileID的用意也是使每个文件对应的记录全局唯一。避免当UserID与CreateTime相同时的两个不同文件记录相互覆盖。
按照这种RowKey存储上述文件记录,在HBase表中是下面的结构:
rowKey(userID 6 + time 8 + fileID 6) name category ....
00000120120902000001
00000120120904000002
00000120120906000003
00000120120908000004
00000120120910000005
00000120120914000007
00000220120912000006
00000220120916000008
00000320120918000009
00000420120920000010
怎样用这张表?
在建立一个scan对象后,我们setStartRow(00000120120901),setEndRow(00000120120914)。
这样,scan时只扫描userID=1的数据,且时间范围限定在这个指定的时间段内,满足了按用户以及按时间范围对结果的筛选。并且由于记录集中存储,性能很好。
然后使用SingleColumnValueFilter(org.apache.hadoop.hbase.filter.SingleColumnValueFilter),共4个,分别约束name的上下限,与category的上下限。满足按同时按文件名以及分类名的前缀匹配。
(注意:使用SingleColumnValueFilter会影响查询性能,在真正处理海量数据时会消耗很大的资源,且需要较长的时间。
在后续的博文中我将多举几种应用场景下rowKey的,可以满足简单条件下海量数据瞬时返回的查询功能)
如果需要分页还可以再加一个PageFilter限制返回记录的个数。
以上,我们完成了高性能的支持多条件查询的HBase表结构设计。
转载:
myBlog: http://blog.csdn.net/pirateleo/
参考文章:http://blog.csdn.net/lzm1340458776/article/details/44941953
hbase学习 rowKey的设计-4的更多相关文章
- HBase的rowkey的设计原则
HBase是三维有序存储的,通过rowkey(行键),column key(column family和qualifier)和TimeStamp(时间戳)这个三个维度可以对HBase中的数据进行快速定 ...
- hbase的rowkey简单设计
问题: 需要查询某一用户某时间做了什么,PlatID和vopenid可以保证一个用户唯一,但同一时间同一用户可能日志有多条. 使用PlatID(int).vopenid(int)和dtTime(dat ...
- HBase学习(四) 二级索引 rowkey设计
HBase学习(四) 一.HBase的读写流程 画出架构 1.1 HBase读流程 Hbase读取数据的流程:1)是由客户端发起读取数据的请求,首先会与zookeeper建立连接2)从zookeepe ...
- HBase之六:HBase的RowKey设计
数据模型 我们可以将一个表想象成一个大的映射关系,通过行健.行健+时间戳或行键+列(列族:列修饰符),就可以定位特定数据,Hbase是稀疏存储数据的,因此某些列可以是空白的, Row Key Time ...
- HBase学习系列
转自:http://www.aboutyun.com/thread-8391-1-1.html 问题导读: 1.hbase是什么? 2.hbase原理是什么? 3.hbase使用中会遇到什么问题? 4 ...
- Hbase 学习(七) rowkey设计
一直以来对rowkey的设计都比较迷茫,<hbase权威指南>倒是给出了个还算靠谱的例子. 下面这个例子有点儿像帖子表结构,它的rowkey设计是这样的,可以简单的理解为,什么人在什么时间 ...
- HBase的RowKey设计原则
HBase是三维有序存储的,通过rowkey(行键),column key(column family和qualifier)和TimeStamp(时间戳)这个三个维度可以对HBase中的数据进行快速定 ...
- Hbase中rowkey设计原则
1.热点问题 在某一时间段,有大量的数据同时对一个region进行操作 2.原因 对rowkey的设计不合理 对rowkey的划分不合理 3.解决方式 rowkey是hbase的读写唯一标识 最大长度 ...
- 大数据性能调优之HBase的RowKey设计
1 概述 HBase是一个分布式的.面向列的数据库,它和一般关系型数据库的最大区别是:HBase很适合于存储非结构化的数据,还有就是它基于列的而不是基于行的模式. 既然HBase是采用KeyValue ...
随机推荐
- IP首部
1. 引言 IP是TCP/IP协议族中最为核心的协议.所有的TCP.UDP.ICMP及IGMP数据都以IP数据报格式传输,但是IP提供不可靠.无连接的数据报传送服务.不可靠的意思是它不能保证IP数据报 ...
- PCIe调试心得_DMA part3
作者: East FPGA那点事儿 上一章讲述了PCIe总线如何提高DMA的效率. 本章以服务器常用的4通道1000M以太网卡为例讲述如何实现多个虚拟DMA通道. 1.多通道DMA发 4通道以太网卡 ...
- [svc][op]关闭linux centos各种声音
现在基本都用xshell了,直接xshell禁止即可 shell报警 #vi /etc/inputrc ================================ set bell-style ...
- 使用PM2管理Node.js集群
介绍 众所周知,Node.js运行在Chrome的JavaScript运行时平台上,我们把该平台优雅地称之为V8引擎.不论是V8引擎,还是之后的Node.js,都是以单线程的方式运行的,因此,在多核心 ...
- CCEaseElasticOut调整速度和振幅
pSprite->setAnchorPoint(CCPoint(,)); pSprite->setPosition(CCPoint(,)); CCFiniteTimeAction* pAc ...
- TransitionsTest
CCTransitionScene* createTransition(int nIndex, float t, CCScene* s) { // fix bug #486, without setD ...
- 使用apache服务器配置虚拟目录
安装好了apache+php+mysql之后就像在自己电脑上安装wordpress玩玩,因为安装好之后根目录在D盘, 所以就想自己配置一个虚拟目录指向路径为D:\wordpress的wordpress ...
- 【转】Hive优化总结
优化时,把hive sql当做map reduce程序来读,会有意想不到的惊喜. 理解Hadoop的核心能力,是hive优化的根本.这是这一年来,项目组所有成员宝贵的经验总结. 长期观察hadoo ...
- Linux基础之 ---目录结构
类Unix系统目录结构ubuntu没有盘符这个概念,只有一个根目录/,所有文件都在它下面/ 根目录bin //系统可执行程序,如命令boot //内核和启动程序,所有和启动相关的文件都保存在这里gru ...
- pionter指针小结
第七章.指针和函数的关系 可以把一个指针声明成为一个指向函数的指针. intfun1(char*,int); int(*pfun1)(char*,int); pfun1=fun1; .... .... ...