牛顿迭代法(Newton's method)
关键词:牛顿法、牛顿迭代法、牛顿切线法、牛顿-拉弗森方法
参考:牛顿迭代法-百度百科、牛顿切线法-百度文库数学学院、牛顿切线法数值分析、非线性方程(组)的数值解法、Latex入门
https://blog.csdn.net/ccnt_2012/article/details/81837154
一、牛顿切线法基本思想
背景
多数方程不存在求根公式(参考:伽罗瓦理论、一元五次方程求根公式),因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数的泰勒级数的前面几项来寻找方程的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。
思路
将非线性方程线性化
设$x_{k}$是$f(x)=0$的近似根,将$f(x)$在$x_{k}$附近用一阶Tylor多项式近似(带皮亚诺余项):
$$ \begin{align*} f(x)&=f(x_{k})+f'(x_{k})(x-x_{k})+\frac{2f''(ξ)}{2!}(x-x_{k}) \\ &≈f(x_{k})+f'(x_{k})(x-x_{k})+P(x) \end{align*} $$
令$ P(x)=0 $,当$ f'(x)≠0 $时有意义,可用线性方程近似代替
$ f(x)=f(x_{k})+f'(x_{k})(x-f(x_{k})) $
令$ f(x)=0 $,解此线性的方程得:
$x_{k+1} = x_{k}-\frac{f(x_{k})}{f'(x_{k})}$
此式即为牛顿迭代公式。
二、牛顿法的几何意义
设一个一元方程:
$$ y = f(x) $$
由图中可看出:
$f(x)=0$ 的根,就是曲线与x轴的交点的横坐标x*。
在曲线上任取一点$(x_{0},f(x_{0}))$,过该点做曲线的切线,其斜率为$f'(x_{0})$,由直线方程$y-y_{0}=k(x-x_{0})$,得到过该点的切线方程:
$$ y=f(x_{0})+f'(x_{0})(x-x_{0}) $$
令$ y=0 $,即$f(x_{0})+f'(x_{0})(x-x_{0}) = 0$,得到该切线与x轴交点的横坐标:
$$ x=x_{0}-\frac{f(x_{0})}{f'(x_{0})} $$
一次迭代后,$ x1=x_{0}-\frac{f(x_{0})}{f'(x_{0})} $
过点$ (x1,f(x1)) $再做曲线的切线,重复以上步骤,切线与x轴交点的横坐标就越来越接近$x^*$。
设$x_{n}$是$x^*$的第$n$次近似值,过$(x_{n},f(x_{n}))$做曲线$y=f(x)$的切线,切线与x轴交点的横坐标为:
$$ x_{n+1} = x_{n}-\frac{f(x_{n})}{f'(x_{n})} $$
因此牛顿法也称牛顿切线法。
三、收敛性与收敛速度
四、应用
1.牛顿迭代法快速寻找平方根
构造方程$f(x)=x^2-n$
牛顿迭代法(Newton's method)的更多相关文章
- 牛顿迭代法(Newton's Method)
牛顿迭代法(Newton's Method) 简介 牛顿迭代法(简称牛顿法)由英国著名的数学家牛顿爵士最早提出.但是,这一方法在牛顿生前并未公开发表. 牛顿法的作用是使用迭代的方法来求解函数方程的根. ...
- 牛顿迭代法(Newton's Method)
牛顿迭代法(Newton's Method) 简介 牛顿迭代法(简称牛顿法)由英国著名的数学家牛顿爵士最早提出.牛顿法的作用是使用迭代的方法来求解函数方程的根.简单地说,牛顿法就是不断求取切线的过程. ...
- 牛顿迭代法(Newton's Method)
牛顿迭代法(简称牛顿法)由英国著名的数学家牛顿爵士最早提出.可是,这 一方法在牛顿生前并未公开发表(讨厌的数学家们还是鼓捣出来了) 牛顿法的作用是使用迭代的方法来求解函数方程的根. 简单地说,牛顿法就 ...
- 牛顿方法(Newton's Method)
在讲义<线性回归.梯度下降>和<逻辑回归>中我们提到可以用梯度下降或梯度上升的方式求解θ.在本文中将讲解另一种求解θ的方法:牛顿方法(Newton's method). 牛顿方 ...
- Atitit 迭代法 “二分法”和“牛顿迭代法 attilax总结
Atitit 迭代法 "二分法"和"牛顿迭代法 attilax总结 1.1. ."二分法"和"牛顿迭代法"属于近似迭代法1 1. ...
- Newton's Method
在求最优解时,前面很多地方都用梯度下降(Gradient Descent)的方法,但由于最优步长很难确定,可能会出现总是在最优解附近徘徊的情况,致使最优解的搜索过程很缓慢.牛顿法(Newton's M ...
- 牛顿法(Newton's Method)
Newton's Method 在求最优解时,前面很多地方都用梯度下降(Gradient Descent)的方法,但由于最优步长很难确定,可能会出现总是在最优解附近徘徊的情况,致使最优解的搜索过程很缓 ...
- Java实现牛顿迭代法求解平方根、立方根
一.简介 牛顿迭代法(Newton's method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法. ...
- 【cs229-Lecture4】Newton’s method
之前我们在求Logistic回归时,用的是梯度上升算法,也就是要使得似然函数最大化,利用梯度上升算法,不断的迭代.这节课引出牛顿方法,它的作用和梯度上升算法的一样的,不同的是牛顿方法所需的迭代次数更少 ...
随机推荐
- 马婕 2014MBA专硕考试报刊选读 5 朱令案悬而未决引起全社会的关注(转)
http://blog.sina.com.cn/s/blog_3e66af4601016pkh.html Why hasn’t doubt over poisoning subsided? 公众对于朱 ...
- linux下mysql安装和调优
1.yum yum -y install mysql-server mysql 2.RPM安装 http://dev.mysql.com/downloads/ 下载RPM包,请确认服务器版本,我的是红 ...
- eclipse中maven install提示编码GBK的不可映射字符
今天在eclipse中使用Maven编译项目源代码时,结果如下了如下的错误 在Java源码中没有提示任何报错,即便是改掉项目编码也是不行,如下图所示:
- select for update [nowait]
Syntax The NOWAIT and WAIT clauses let you tell the database how to proceed if the SELECT statement ...
- 排序:快速排序Quick Sort
原理,通过一趟扫描将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序 ...
- Jetty 源码分析
一. 总括 你了解Jetty 吗,就像我们所熟知的Tomcat一样, Jetty是一个免费的开放源码的100%纯Java的Http服务器和Servlet容器. Jetty具备以下特点: ...
- 7、Docker Container
7.1 什么是Container 通过image创建(copy) 在Image layer之上建立一个Container layer(可读写) 类比面向对象:类和实例 Image负责APP的存储和分发 ...
- Asp.NetCore MVC Web 应用
Asp.NetCore MVC 与 普通的MVC 基本一致, 只是代码结构稍有改动 一.创建项目 1. 2. 3. 项目结构 二. 构建数据模型 1. Startup类中配置EF Core MySql ...
- Mustache 使用说明
Mustache 使用说明 最近在升级SinGooCMS到MVC架构.管理前端使用了Mustache模板,把使用心得记录一下! 一.官网http://mustache.github.io/https: ...
- 自己从0开始学习Unity的笔记 VII (C#中类继承练习)
好久都没有写了.今天做了类继承的练习,做了一个小队,进行简单的判定. namespace 兵团建立练习 { class ServantBasics { public string name; //pr ...