【2016北京集训】crash的游戏
Portal --> broken qwq
Description
有个口袋,一开始里面有\(N\)个球,接下来进行\(M\)次操作,每次可以选择往里面放一个球或者从里面拿一个球出来,在这\(M\)次操作之后,要取\(K\)个球出来,对于每一种操作方式,都有取出\(K\)个球的方案数(球两两不同),求方案总数
数据范围:\(T<=500,N<=10^9,M<=10^9,K<=300\),保证\(N>=M+K\)
Solution
首先考虑最朴素的做法,我们可以考虑在\(M\)次操作中有\(i\)次是放球的,\(M-i\)次是取球的,那么可以得到这样的一个式子:
\]
然后看一下数据范围:哦豁凉凉
显然我们需要探求一个时间复杂度只与\(K\)相关的算法,所以我们换一个角度思考问题
考虑转化一下这个操作:假设我们一开始先拿走\(M\)个球(因为数据有保证所以不用担心不够拿的问题),那么接下来的每次操作就变成了:要么不动,要么往袋子里面加入\(2\)个球
这样一来在操作结束之后,我们最终的球可以按照来源分为两类:一类是原本的\(N-M\)个球(称为第一类),一类是后面操作中加入的球(称为第二类),现在我们要在这些球中取\(K\)个
假设这\(K\)个球中,有\(x\)个是第一类中取的,有\(K-x\)个是第二类中取的,第一类的贡献显然是“从\(N-M\)个中选\(x\)个”也就是\(\binom {N-M} x\),接下来考虑第二类的贡献怎么算
考虑dp,每一次操作是加入一对球,那么我们设\(f[i][j]\)表示:我们拿走了\(i\)个球,并且这\(i\)个球属于的加入操作的集合大小为\(j\)(也就是说选了\(j\)个加入操作中加入的球,如果说有一次操作加入的两个球都被拿走了,那么集合大小还是\(1\))的取球方案数,不难列出递推式:
\]
具体一点就是,前半部分是在这次操作中取\(1\)个球,可以选择这次操作加入的第一个球或者第二个球(球两两之间不同嘛);后半部分是将这次操作中的\(2\)个球都取上
那么在第二类中取\(x\)个球的贡献就是
\]
具体一点就是:枚举涉及的加入操作集合大小\(j\),然后要在\(M\)个操作中钦定\(j\)个操作为加入操作,然后\(f[x][j]\)就是贡献,剩下还有\(M-j\)个操作,那么这些操作不管是加球还是什么都不做都可以,所以是\(2^{M-j}\)
所以总的式子就是:
\]
中间的两个组合数的话。。不难发现从\(\binom n m\)推到\(\binom n {m+1}\)只要乘上一个\(\frac{n-m}{m+1}\)即可,所以我们可以一路递推上去就好了
于是乎就可以\(O(K^2)\)搞定这题啦ovo
然而ckw大爷有不同的做法qwq实际上这题可以简单粗暴直接推式子但是qwq我这种蒟蒻推不动啊qwq
不过。。mark:我们可以将组合数\(\binom x i\)看成一个关于\(x\)的\(i\)次多项式(因为写成阶乘相除形式之后拆个括号就很明显了)
代码大概长这个样子
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=310,MOD=1e9+7;
int f[N][N],inv[N];
int n,m,K,T,ans;
int plu(int x,int y){return (1LL*x+y)%MOD;}
int mul(int x,int y){return 1LL*x*y%MOD;}
int ksm(int x,int y){
int ret=1,base=x;
for (;y;y>>=1,base=mul(base,base))
if (y&1) ret=mul(ret,base);
return ret;
}
void prework(int n){
f[0][0]=1;
for (int i=1;i<=n;++i){
for (int j=i/2;j<=i;++j)
f[i][j]=plu(mul(2,f[i-1][j-1]),f[i-2][j-1]);
}
for (int i=0;i<N;++i)
inv[i]=ksm(i,MOD-2);
}
void dp(){
int tmp1=1,tmp2,ttmp,pw;
for (int i=0;i<=K;++i){
tmp2=1; ttmp=(K-i+1)/2; pw=1;
for (int j=0;j<ttmp;++j) tmp2=mul(tmp2,mul(m-j,inv[j+1]));
pw=ksm(2,m-(K-i+1)/2);
for (int j=ttmp;j<=K-i;++j){
ans=plu(ans,mul(tmp1,mul(tmp2,mul(pw,f[K-i][j]))));
tmp2=mul(tmp2,mul(m-j,inv[j+1]));
pw=mul(pw,inv[2]);
}
tmp1=mul(tmp1,mul(n-m-i,inv[i+1]));
}
}
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
scanf("%d",&T);
prework(300);
for (int o=1;o<=T;++o){
scanf("%d%d%d",&n,&m,&K);
ans=0;
dp();
printf("%d\n",ans);
}
}
【2016北京集训】crash的游戏的更多相关文章
- (2016北京集训十)【xsy1528】azelso - 概率期望dp
北京集训的题都是好题啊~~(于是我爆0了) 注意到一个重要的性质就是期望是线性的,也就是说每一段的期望步数可以直接加起来,那么dp求出每一段的期望就行了... 设$f_i$表示从$i$出发不回到$i$ ...
- 2016北京集训测试赛(十七)Problem A: crash的游戏
Solution 相当于要你计算这样一个式子: \[ \sum_{x = 0}^m \left( \begin{array}{} m \\ x \end{array} \right) \left( \ ...
- [2016北京集训测试赛17]crash的游戏-[组合数+斯特林数+拉格朗日插值]
Description Solution 核心思想是把组合数当成一个奇怪的多项式,然后拉格朗日插值..:哦对了,还要用到第二类斯特林数(就是把若干个球放到若干个盒子)的一个公式: $x^{n}=\su ...
- [2016北京集训试题6]魔法游戏-[博弈论-sg函数]
Description Solution 首先,每个节点上的权值可以等价于该节点上有(它的权的二进制位数+1)个石子,每次可以拿若干个石子但不能不拿. 然后就发现这和NIM游戏很像,就计算sg函数em ...
- 【2016北京集训测试赛(八)】 crash的数列 (思考题)
Description 题解 题目说这是一个具有神奇特性的数列!这句话是非常有用的因为我们发现,如果套着这个数列的定义再从原数列引出一个新数列,它居然还是一样的...... 于是我们就想到了能不能用多 ...
- (2016北京集训十三)【xsy1531】魔法游戏 - Nim游戏
题解: 好题!我的结论很接近正解了... 把一个数化成二进制,每次至少要拿走一位,最多全拿走,不能不拿.那么这就是一个经典的Nim问题了,子树异或起来就是根节点的答案,随便递推一下就行了. 代码: # ...
- 【2016北京集训测试赛(十)】 Azelso (期望DP)
Time Limit: 1000 ms Memory Limit: 256 MB Description 题解 状态表示: 这题的状态表示有点难想...... 设$f_i$表示第$i$个事件经过之 ...
- 【2016北京集训测试赛(二)】 thr (树形DP)
Description 题解 (这可是一道很早就碰到的练习题然后我不会做不想做,没想到在Contest碰到欲哭无泪......) 题目大意是寻找三点对的个数,使得其中的三个点两两距离都为d. 问题在于 ...
- 【2016北京集训测试赛(十六)】 River (最大流)
Description Special Judge Hint 注意是全程不能经过两个相同的景点,并且一天的开始和结束不能用同样的交通方式. 题解 题目大意:给定两组点,每组有$n$个点,有若干条跨组 ...
随机推荐
- centos下JDK安装及环境变量配置
由于centos安装自带openjdk,需要将其卸载后安装自己的jdk 卸载centos自带jdk 1.查找java :rpm -qa | grep java 2.卸载时提示权限不够,进入root目录 ...
- DeepLearning - Overview of Sequence model
I have had a hard time trying to understand recurrent model. Compared to Ng's deep learning course, ...
- 联邦快递 IE和IP的区别 Fedex IE VS Fedex IP
什么是FedEx IP? FedEx IP指的是联邦快递优先服务,时效比较快些,相对来说价格也比普通的高一些. 什么是FedEx IE? FedEx IE指的是联邦快递经济服务,时效与FedEx IP ...
- LCA最近公共祖先(Tarjan离线算法)
这篇博客对Tarjan算法的原理和过程模拟的很详细. 转载大佬的博客https://www.cnblogs.com/JVxie/p/4854719.html 第二次更新,之前转载的博客虽然胜在详细,但 ...
- Java 学习笔记 ------第四章 认识对象
本章学习目标: 区分基本类型与类类型 了解对象与参考的关系 从打包器认识对象 以对象观点看待数组 认识字符串的特性 一."=" 和 "==" 当=用于基本类型时 ...
- Dijkstra 最短路径算法 秒懂详解
想必大家一定会Floyd了吧,Floyd只要暴力的三个for就可以出来,代码好背,也好理解,但缺点就是时间复杂度高是O(n³). 于是今天就给大家带来一种时间复杂度是O(n²),的算法:Dijkstr ...
- ImportError: No module named examples.tutorials.mnist
Traceback (most recent call last): File "nearest_neighbor.py", line 14, in <module> ...
- 201621123037 《Java程序设计》第3周学习总结
#Week03-面向对象入门 1. 本周学习总结 初学面向对象,会学习到很多碎片化的概念与知识.尝试学会使用思维导图将这些碎片化的概念.知识点组织起来.请使用工具画出本周学习到的知识点及知识点之间的联 ...
- (转)用MongoDB 实现优酷API 缓存
由于众所周知的原因, 邪恶的企业优酷于九月的某一天开始禁止第三方播放器加载视频API, 我不得不设置一个反向代理来绕过Flash 的跨域限制. 自此服务器压力激增, 导致用户体验大为劣化. 为了减少服 ...
- Windows搭建Log4Net+FileBeat+ELK日志分析系统过程
参考博客:http://udn.yyuap.com/thread-54591-1-1.html ; https://www.cnblogs.com/yanbinliu/p/6208626.html ; ...