【2016北京集训】crash的游戏
Portal --> broken qwq
Description
有个口袋,一开始里面有\(N\)个球,接下来进行\(M\)次操作,每次可以选择往里面放一个球或者从里面拿一个球出来,在这\(M\)次操作之后,要取\(K\)个球出来,对于每一种操作方式,都有取出\(K\)个球的方案数(球两两不同),求方案总数
数据范围:\(T<=500,N<=10^9,M<=10^9,K<=300\),保证\(N>=M+K\)
Solution
首先考虑最朴素的做法,我们可以考虑在\(M\)次操作中有\(i\)次是放球的,\(M-i\)次是取球的,那么可以得到这样的一个式子:
\]
然后看一下数据范围:哦豁凉凉
显然我们需要探求一个时间复杂度只与\(K\)相关的算法,所以我们换一个角度思考问题
考虑转化一下这个操作:假设我们一开始先拿走\(M\)个球(因为数据有保证所以不用担心不够拿的问题),那么接下来的每次操作就变成了:要么不动,要么往袋子里面加入\(2\)个球
这样一来在操作结束之后,我们最终的球可以按照来源分为两类:一类是原本的\(N-M\)个球(称为第一类),一类是后面操作中加入的球(称为第二类),现在我们要在这些球中取\(K\)个
假设这\(K\)个球中,有\(x\)个是第一类中取的,有\(K-x\)个是第二类中取的,第一类的贡献显然是“从\(N-M\)个中选\(x\)个”也就是\(\binom {N-M} x\),接下来考虑第二类的贡献怎么算
考虑dp,每一次操作是加入一对球,那么我们设\(f[i][j]\)表示:我们拿走了\(i\)个球,并且这\(i\)个球属于的加入操作的集合大小为\(j\)(也就是说选了\(j\)个加入操作中加入的球,如果说有一次操作加入的两个球都被拿走了,那么集合大小还是\(1\))的取球方案数,不难列出递推式:
\]
具体一点就是,前半部分是在这次操作中取\(1\)个球,可以选择这次操作加入的第一个球或者第二个球(球两两之间不同嘛);后半部分是将这次操作中的\(2\)个球都取上
那么在第二类中取\(x\)个球的贡献就是
\]
具体一点就是:枚举涉及的加入操作集合大小\(j\),然后要在\(M\)个操作中钦定\(j\)个操作为加入操作,然后\(f[x][j]\)就是贡献,剩下还有\(M-j\)个操作,那么这些操作不管是加球还是什么都不做都可以,所以是\(2^{M-j}\)
所以总的式子就是:
\]
中间的两个组合数的话。。不难发现从\(\binom n m\)推到\(\binom n {m+1}\)只要乘上一个\(\frac{n-m}{m+1}\)即可,所以我们可以一路递推上去就好了
于是乎就可以\(O(K^2)\)搞定这题啦ovo
然而ckw大爷有不同的做法qwq实际上这题可以简单粗暴直接推式子但是qwq我这种蒟蒻推不动啊qwq
不过。。mark:我们可以将组合数\(\binom x i\)看成一个关于\(x\)的\(i\)次多项式(因为写成阶乘相除形式之后拆个括号就很明显了)
代码大概长这个样子
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=310,MOD=1e9+7;
int f[N][N],inv[N];
int n,m,K,T,ans;
int plu(int x,int y){return (1LL*x+y)%MOD;}
int mul(int x,int y){return 1LL*x*y%MOD;}
int ksm(int x,int y){
int ret=1,base=x;
for (;y;y>>=1,base=mul(base,base))
if (y&1) ret=mul(ret,base);
return ret;
}
void prework(int n){
f[0][0]=1;
for (int i=1;i<=n;++i){
for (int j=i/2;j<=i;++j)
f[i][j]=plu(mul(2,f[i-1][j-1]),f[i-2][j-1]);
}
for (int i=0;i<N;++i)
inv[i]=ksm(i,MOD-2);
}
void dp(){
int tmp1=1,tmp2,ttmp,pw;
for (int i=0;i<=K;++i){
tmp2=1; ttmp=(K-i+1)/2; pw=1;
for (int j=0;j<ttmp;++j) tmp2=mul(tmp2,mul(m-j,inv[j+1]));
pw=ksm(2,m-(K-i+1)/2);
for (int j=ttmp;j<=K-i;++j){
ans=plu(ans,mul(tmp1,mul(tmp2,mul(pw,f[K-i][j]))));
tmp2=mul(tmp2,mul(m-j,inv[j+1]));
pw=mul(pw,inv[2]);
}
tmp1=mul(tmp1,mul(n-m-i,inv[i+1]));
}
}
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
scanf("%d",&T);
prework(300);
for (int o=1;o<=T;++o){
scanf("%d%d%d",&n,&m,&K);
ans=0;
dp();
printf("%d\n",ans);
}
}
【2016北京集训】crash的游戏的更多相关文章
- (2016北京集训十)【xsy1528】azelso - 概率期望dp
北京集训的题都是好题啊~~(于是我爆0了) 注意到一个重要的性质就是期望是线性的,也就是说每一段的期望步数可以直接加起来,那么dp求出每一段的期望就行了... 设$f_i$表示从$i$出发不回到$i$ ...
- 2016北京集训测试赛(十七)Problem A: crash的游戏
Solution 相当于要你计算这样一个式子: \[ \sum_{x = 0}^m \left( \begin{array}{} m \\ x \end{array} \right) \left( \ ...
- [2016北京集训测试赛17]crash的游戏-[组合数+斯特林数+拉格朗日插值]
Description Solution 核心思想是把组合数当成一个奇怪的多项式,然后拉格朗日插值..:哦对了,还要用到第二类斯特林数(就是把若干个球放到若干个盒子)的一个公式: $x^{n}=\su ...
- [2016北京集训试题6]魔法游戏-[博弈论-sg函数]
Description Solution 首先,每个节点上的权值可以等价于该节点上有(它的权的二进制位数+1)个石子,每次可以拿若干个石子但不能不拿. 然后就发现这和NIM游戏很像,就计算sg函数em ...
- 【2016北京集训测试赛(八)】 crash的数列 (思考题)
Description 题解 题目说这是一个具有神奇特性的数列!这句话是非常有用的因为我们发现,如果套着这个数列的定义再从原数列引出一个新数列,它居然还是一样的...... 于是我们就想到了能不能用多 ...
- (2016北京集训十三)【xsy1531】魔法游戏 - Nim游戏
题解: 好题!我的结论很接近正解了... 把一个数化成二进制,每次至少要拿走一位,最多全拿走,不能不拿.那么这就是一个经典的Nim问题了,子树异或起来就是根节点的答案,随便递推一下就行了. 代码: # ...
- 【2016北京集训测试赛(十)】 Azelso (期望DP)
Time Limit: 1000 ms Memory Limit: 256 MB Description 题解 状态表示: 这题的状态表示有点难想...... 设$f_i$表示第$i$个事件经过之 ...
- 【2016北京集训测试赛(二)】 thr (树形DP)
Description 题解 (这可是一道很早就碰到的练习题然后我不会做不想做,没想到在Contest碰到欲哭无泪......) 题目大意是寻找三点对的个数,使得其中的三个点两两距离都为d. 问题在于 ...
- 【2016北京集训测试赛(十六)】 River (最大流)
Description Special Judge Hint 注意是全程不能经过两个相同的景点,并且一天的开始和结束不能用同样的交通方式. 题解 题目大意:给定两组点,每组有$n$个点,有若干条跨组 ...
随机推荐
- CentOS安装输入法及kDE桌面
参考教程:https://jingyan.baidu.com/article/154b46317fdfce28ca8f419e.html
- python环境通过selenium实现自动化web登陆及终端邀请
自动化主要的就是识别对象,可以在网上搜到各种各样的方法,自行百度.下面仅附上一个简单的例子. 环境搭建参考如下链接: https://www.cnblogs.com/hepeilinnow/p/101 ...
- Linux目录与文件操作
文件命名规则: 1.严格区分大小写: 2.长度不能超过255个字符: 3.不能使用/当文件名 mkdir:创建空目录 -p:parent,父目录,逐级创建 -v:verbose,打印详细信息 命令行展 ...
- JUC——TimeUnit工具类(二)
TimeUnit工具类 在java.util.concurrent开发包里面提供有一个TimeUnit类,这个类单独看它的描述是一个时间单元类.该类是一个枚举类,这也是juc开包里面唯一的一个枚举类. ...
- halcon中关于文本的创建以及写入
原文链接:http://blog.sina.com.cn/s/blog_61cc743001017nxr.html#FileName 1.open_file( : : FileName, FileTy ...
- 【python 3.6】使用itertools.product进行排列组合
#python 3.6 #!/usr/bin/env python # -*- coding:utf-8 -*- __author__ = 'BH8ANK' import itertools colo ...
- 《Cocos2d-x游戏开发实战精解》学习笔记4--实战一个简单的钢琴
上一节学习了使用Cocos2d-x播放音乐的方法,但是那种方法一般只适合于播放较大的音乐,而一般比较短小的音乐(如游戏中的打斗.按键音效等)则要通过playEffect来播放.本节使用该方法以及之前学 ...
- windows8和windows server2012不联网安装.net 3.5(包括2.0和3.0)
安装完win8后 发现系统默认没有安装.net3.5 如果使用在线更新的话需要很久才能完成,特别是当前的网速以及微软的服务器.速度很忙,其实我们利用win8的安装盘就可以不需要联网更新,而且几分钟就搞 ...
- Linux下使用vim编辑C程序
这几天在系统能力班自学linux,加上最近大数据课上开始使用linux,我在这里总结一下,linux下使用vim编辑c程序的一些问题. 大数据课上是直接使用micro来编辑的,我这里只是简单的说明一下 ...
- Scrum立会报告+燃尽图(十一月十六日总第二十四次):功能开发与设计页面
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2384 项目地址:https://git.coding.net/zhang ...