LCA的倍增算法
LCA,即树上两点之间的公共祖先,求这样一个公共祖先有很多种方法:
暴力向上:O(n)
每次将深度大的点往上移动,直至二者相遇
树剖:O(logn)
在O(2n)预处理重链之后,每次就将深度大的沿重链向上,直至二者在一条链上
tarjan_lca:离线O(n+m)
先记录所有的询问,对树进行一次dfs,对于搜索到的点u,先将点u往下搜,再将点u与父节点所在集合合并,之后对于它的所有询问(u,v),若v已被访问,那么找v所在集合的祖先e,则e就是u与v的lca
但我们今天要讲的是
倍增lca
实现
void dfs(int u,int fa){
dep[u] = dep[fa] + 1;
f[u][0] = fa;
for (int k = head[u]; k != -1; k = edge[k].next)
if (edge[k].to != fa)
dfs(edge[k].to,u);
}
求深度
void cal(){
for (int i = 1; (1<<i) <= N; i++)
for(int u = 1; u <= N; u++)
f[u][i] = f[f[u][i - 1]][i - 1];
}
预处理
int lca(int u,int v){
if (dep[u] < dep[v]) swap(u,v);
int d = dep[u] - dep[v];
for (int i = 0; (1<<i) <= d; i++)
if ((1<<i) & d)
u = f[u][i];
if (u != v){
for (int i = (int)log(N); i >= 0; i--)
if (f[u][i] != f[v][i]){
u = f[u][i];
v = f[v][i];
}
return f[u][0];
}
else return u;
}
LCA的倍增算法的更多相关文章
- Lca 之倍增算法
引入: 比如说要找树上任意两个点的路上的最大值.如果是一般的做法 会 接近o(n)的搜,从一个点搜到另一个点,但是如果询问多了复杂度就很高了. 然后我们会预处理.预处理是o(n²)的,询问是o(1)的 ...
- 关于树论【LCA树上倍增算法】
补了一发LCA,表示这东西表面上好像简单,但是细节真挺多. 我学的是树上倍增,倍增思想很有趣~~(爸爸的爸爸叫奶奶.偶不,爷爷)有一个跟st表非常类似的东西,f[i][j]表示j的第2^i的祖先,就是 ...
- LCA(最近公共祖先)之倍增算法
概述 对于有根树T的两个结点u.v,最近公共祖先LCA(T,u,v)表示一个结点x,满足x是u.v的祖先且x的深度尽可能大. 如图,3和5的最近公共祖先是1,5和2的最近公共祖先是4 在本篇中我们先介 ...
- LCA倍增算法
LCA 算法是一个技巧性很强的算法. 十分感谢月老提供的模板. 这里我实现LCA是通过倍增,其实就是二进制优化. 任何一个数都可以有2的阶数实现 例如16可以由1 2 4 8组合得到 5可以由1 2 ...
- 最近公共祖先 LCA 倍增算法
树上倍增求LCA LCA指的是最近公共祖先(Least Common Ancestors),如下图所示: 4和5的LCA就是2 那怎么求呢?最粗暴的方法就是先dfs一次,处理出每个点的深度 ...
- 关于LCA的倍增解法的笔记
emmmmm近日刚刚学习了LCA的倍增做法,写一篇BLOG来加强一下印象w 首先 何为LCA? LCA“光辉”是印度斯坦航空公司(HAL)为满足印度空军需要研制的单座单发轻型全天候超音速战斗攻击机,主 ...
- [模板]LCA的倍增求法解析
题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...
- 【一个蒟蒻的挣扎】LCA (倍增)
#include<cstdio> #include<iostream> #include<cstring> using namespace std; struct ...
- LCA树上倍增求法
1.LCA LCA就是最近公共祖先(Least common ancestor),x,y的LCA记为z=LCA(x,y),满足z是x,y的公共祖先中深度最大的那一个(即离他们最近的那一个)qwq 2. ...
随机推荐
- Oracle dba权限下修改用户密码 授予用户权限 解锁用户
1.修改用户密码 alter user scott identified by 123 2.授予用户权限 grant connect,resource to scott 3.解锁用户 alter us ...
- NTP(Network Time Protocol)
Linux NTP配置详解 (Network Time Protocol) http://www.ntp.org/ Meinberg NTP packages provide a GUI instal ...
- java nio通过ByteBuffer输出文件信息
1.通过ByteBuffer的get()方法每次读取一个字节转换成char类型输出. fc = new FileInputStream("src/demo20/data.txt") ...
- php使用mysql之sql注入(功)
sql注入就是用户通过构造sql语句,完成sql一系列操作 准备素材如下: 这是test.html <!DOCTYPE html> <html> <meta charse ...
- 算法笔记(c++)--使用一个辅助栈排列另一个栈
算法笔记(c++)--使用一个辅助栈排列另一个栈 仅仅使用一个辅助栈,不使用其他数据结构来排列一个栈,要求,上大下小. 分析下.肯定是先吧主栈中的数据都放到辅助栈中,在辅助栈中上小下大. 1.首先循环 ...
- Spark Streaming的使用——转载
转载自 Spark Streaming 使用
- LeetCode 888. Fair Candy Swap(C++)
题目: Alice and Bob have candy bars of different sizes: A[i] is the size of the i-th bar of candy that ...
- CS小分队第二阶段冲刺站立会议(5月28日)
昨日成果:昨天对我们的软件的主界面进行了思考,考虑到许多人建议我们团队添加可以自主增加软件快捷键的功能,我对这一想法的可行性和项目总体策划进行评估分析后,决定正式实施:已经完成从电脑上添加文件在我们的 ...
- OOP 2.1 类和对象的基本概念2
1.成员函数的另一种写法:类的成员函数和类的定义分开写 e.g. class rectangle { public: int w,h; int area(); int p(); void init(i ...
- Eclipse的黑色主题背景(github)
MoonRise UI Theme An early version of a dark UI theme for Eclipse 4+. Requirements Eclipse 4.2+ In ...