题目链接:选数

  这种SB题我都Wa飞了,彻底没救系列~

  首先,我们可以发现1,如果我们选了两个不同的数,那么它们的\(\gcd\)不会超过\(r-l+1\)。于是,我们可以设一个\(f_i\)表示任取\(n\)个数,它们的\(\gcd\)为\(ik\)的方案数,最后我们要的答案就是\(f_1\)。我们考虑容斥一下,在求\(f_i\)的时候,先把\([l,r]\)中是\(ik\)倍数的数全部拿出来,然后任意选\(n\)个,这样选出来的数他们的\(\gcd\)一定是\(ik\)的倍数。于是,我们只需减去\(f_{2i},f_{3i},\dots,f_{\lfloor \frac{r-l+1}{i}\rfloor i}\)即可。

  这样的话,有可能还有些数\(\gcd\)是\(ik\)的倍数我们却没统计到。由于这些未统计的\(\gcd\)肯定比\(r-l+1\)大,那么肯定是选了\(n\)个相同的数,于是这一部分就可以直接算了。

  下面贴代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
#define maxn 100010
#define mod 1000000007 using namespace std;
typedef long long llg; int n,k,l,r;
llg f[maxn]; void gi(llg &x){if(x>=mod) x%=mod;}
llg mi(llg a,int b){
llg s=1;
while(b){
if(b&1) s=s*a,gi(s);
a=a*a,gi(a); b>>=1;
}
return s;
} int main(){
File("a");
scanf("%d %d %d %d",&n,&k,&l,&r);
int rr=min(r/k,r-l+1);
for(int i=rr,x,y=rr*k,z;i;i--,y-=k){
x=(r/y)-(l/y); if(l%y==0) x++; z=(y>=l);
for(int j=i<<1;j<=rr;j+=i) f[i]-=f[j],(f[i]+=mod)%=mod,z+=(j*k>=l);
f[i]+=mi(x,n)-x+z; (f[i]+=mod)%=mod;
}
printf("%lld",(f[1]+mod)%mod);
return 0;
}

BZOJ 3930 【CQOI2015】 选数的更多相关文章

  1. BZOJ 3930: [CQOI2015]选数 递推

    3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...

  2. 【刷题】BZOJ 3930 [CQOI2015]选数

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  3. bzoj 3930: [CQOI2015]选数

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  4. BZOJ 3930: [CQOI2015]选数 莫比乌斯反演

    https://www.lydsy.com/JudgeOnline/problem.php?id=3930 https://blog.csdn.net/ws_yzy/article/details/5 ...

  5. 【递推】BZOJ 3930: [CQOI2015]选数

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  6. bzoj 3930: [CQOI2015]选数【快速幂+容斥】

    参考:https://www.cnblogs.com/iwtwiioi/p/4986316.html 注意区间长度为1e5级别. 则假设n个数不全相同,那么他们的gcd小于最大数-最小数,证明:则gc ...

  7. bzoj 3930: [CQOI2015]选数【递推】

    妙啊 这个题一上来就想的是莫比乌斯反演: \[ f(d)=\sum_{k=1}^{\left \lceil \frac{r}{d} \right \rceil}\mu(k)(\left \lceil ...

  8. BZOJ 3930: [CQOI2015]选数 莫比乌斯反演 + 杜教筛

    求 $\sum_{i=L}^{R}\sum_{i'=L}^{R}....[gcd_{i=1}^{n}(i)==k]$   $\Rightarrow \sum_{i=\frac{L}{k}}^{\fra ...

  9. 【BZOJ】3930: [CQOI2015]选数

    题意 从区间\([L, R]\)选\(N\)个数(可以重复),问这\(N\)个数的最大公约数是\(K\)的方案数.(\(1 \le N, K \le 10^9, 1 \le L \le R \le 1 ...

  10. 3930: [CQOI2015]选数

    Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1958  Solved: 979[Submit][Status][Discuss] Descripti ...

随机推荐

  1. Egret P2 入门学习资料

    1 p2库下载: https://github.com/egret-labs/egret-game-library/tree/rc/4.1.0 2 p2 作者demo:https://github.c ...

  2. AndroidStudio build.gradle 报错

    Android Studio. I'm getting this kind of error during application run. Error:Execution failed for ta ...

  3. 电力项目十七--数据字典首页JS添加和删除表格

    知识点:jQuery是一个JavaScript函数库. JS代码: function insertRows(){ //获取表格对象 var tb1 = $("#dictTbl"); ...

  4. ThinkPHP分类查询(获取当前分类的子分类,获取父分类,下一级分类)

    获取指定分类的所有子分类ID号 //获取指定分类的所有子分类ID号 function getAllChildcateIds($categoryID){ //初始化ID数组 $array[] = $ca ...

  5. CentOS7.2升级默认yum安装的php版本

    CentOS7.2yum安装php默认版本为5.4,可以升级通过yum安装更高版本 设置yum源 rpm -Uvh https://mirror.webtatic.com/yum/el7/webtat ...

  6. POI3的资料整理

    转自http://aman.cao.blog.163.com/blog/static/32951336201010823557408/ POI3的资料整理一.POI简介 Jakarta POI 是ap ...

  7. 使用CXF做webservice整合现有项目的例子

    从网上看了很多CXF的资料,大部分都是单独的作为一个webservice项目,对于在现有的spring项目上提供webservice服务的例子基本没有找到. 我做的这个例子是介绍怎么把cxf整合到现有 ...

  8. Django 的 Form组件

    Django的Form主要具有一下几大功能: 生成HTML标签 验证用户数据(显示错误信息) HTML Form提交保留上次提交数据 初始化页面显示内容 Form类的使用: 1.定义规则: from ...

  9. inotify+rsync安装配置

    环境 系统 IP地址 主服务器 CentOS7.4 192.168.1.1 备份服务器 CentOS7.4 192.168.1.2 一.备份服务器 安装rsync(备) wget https://rs ...

  10. PostgreSQL数据库的安装与PostGIS的安装(转)

    原文:http://lovewinner.iteye.com/blog/1490915 安装postgresql sudo apt-get install postgresql-9.1 postgre ...