Description

传送门

Solution

题目简化后要求的实际上是$\sum _{i=1}^{n-1}\sum _{j=i+1}^{n}C^{A[i]+A[j]}_{A[i]+A[j]+B[i]+B[j]}$

这时看看n的数据范围瞬间绝望qaq。

不过看到A,B的数据范围似乎明白了什么。。。好像是O(n2)的是不是?

关键:从(0,0)走到(m,n)且只能往上和右走的方案数为$C_{n+m}^{n}$

所以$C^{A[i]+A[j]}_{A[i]+A[j]+B[i]+B[j]}$等价于从(-A[i],-B[i])到(A[j],B[j])并且只能往上和右走的方案数。

em突然开心。我们把所有dp[2000-A[i]][2000-B[i]]++。

转移$dp[i][j]=dp[i-1][j]+dp[i][j-1]$显然。

接着我们到dp[2000+A[i]][2000+B[i]]处统计答案。不过要减去从(2000-A[i],2000-B[i]])到(2000+A[i],2000+B[i]])的方案数(直接组合数)

最后答案除以2。

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int mod=1e9+;
typedef long long ll;
ll fac[],inv[],ans=;
int n;
int a[],b[],f[][];
ll C(int x,int y){return fac[x]*inv[y]%mod*inv[x-y]%mod;}
int main()
{
fac[]=fac[]=inv[]=inv[]=;
for (int i=;i<=;i++) fac[i]=i*fac[i-]%mod,inv[i]=(mod-mod/i)*inv[mod%i]%mod;
for (int i=;i<=;i++) inv[i]=inv[i]*inv[i-]%mod;
scanf("%d",&n);
for (int i=;i<=n;i++)
{
scanf("%d%d",&a[i],&b[i]);
f[-a[i]][-b[i]]++;
}
for (int i=;i<=;i++) for (int j=;j<=;j++)
{
if (i) f[i][j]+=f[i-][j];if (f[i][j]>=mod) f[i][j]-=mod;
if (j) f[i][j]+=f[i][j-];if (f[i][j]>=mod) f[i][j]-=mod;
}
for (int i=;i<=n;i++)
{
ans+=f[+a[i]][+b[i]];if (ans>=mod) ans-=mod;
ans-=C((a[i]+b[i])<<,a[i]<<);
if (ans<) ans+=mod;
}
ans=ans*inv[]%mod;
cout<<ans;
}

[agc001E]BBQ Hard[组合数性质+dp]的更多相关文章

  1. [Agc001E] BBQ Hard

    [Agc001E] BBQ Hard 题目大意 给定\(n\)对正整数\(a_i,b_i\),求\(\sum_{i=1}^{n-1} \sum_{j=i+1}^n \binom{a_i+b_i+a_j ...

  2. BZOJ_3209_花神的数论题_组合数+数位DP

    BZOJ_3209_花神的数论题_组合数+数位DP Description 背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 描述 话说花神这天又 ...

  3. agc001E - BBQ Hard(dp 组合数)

    题意 题目链接 Sol 非常妙的一道题目. 首先,我们可以把\(C_{a_i + b_i + a_j + b_j}^{a_i + a_j}\)看做从\((-a_i, -b_i)\)走到\((a_j, ...

  4. AtCoder AGC001E BBQ Hard (DP、组合计数)

    题目链接: https://atcoder.jp/contests/agc001/tasks/agc001_e 题解: 求\(\sum^n_{i=1}\sum^n_{j=i+1} {A_i+A_j+B ...

  5. [BZOJ4870][Shoi2017]组合数问题 dp+矩阵乘

    4870: [Shoi2017]组合数问题 Time Limit: 10 Sec  Memory Limit: 512 MB Description Input 第一行有四个整数 n, p, k, r ...

  6. Codeforces 869C The Intriguing Obsession:组合数 or dp

    题目链接:http://codeforces.com/problemset/problem/869/C 题意: 红色.蓝色.紫色的小岛分别有a,b,c个. 你可以在两个不同的岛之间架桥,桥的长度为1. ...

  7. POJ 3046 Ant Counting ( 多重集组合数 && 经典DP )

    题意 : 有 n 种蚂蚁,第 i 种蚂蚁有ai个,一共有 A 个蚂蚁.不同类别的蚂蚁可以相互区分,但同种类别的蚂蚁不能相互区别.从这些蚂蚁中分别取出S,S+1...B个,一共有多少种取法. 分析 :  ...

  8. 洛谷$P$3746 [六省联考2017]组合数问题 $dp$+矩乘+组合数学

    正解:$dp$+矩乘+组合数学 解题报告: 传送门! 首先不难发现这个什么鬼无穷就是个纸老虎趴,,,最多在$\binom{n\cdot k+r}{n\cdot k}$的时候就已经是0了后面显然不用做下 ...

  9. 多重集组合数 简单dp

    #include <cstdio> #include <iostream> using namespace std; +; +; +; ; int n,m,M; int a[m ...

随机推荐

  1. VM安装CentOs7虚拟机后无法上网之解决方法

    最近在研究DC/OS的安装,读了很多安装方法后决定先从docker的安装入手,由于DC/OS的安装必须在CentOs7版本以上,所以就在VM下安装了CentOs7,殊不知安装后并不能上网,于是乎又转到 ...

  2. 【[HEOI2016/TJOI2016]序列】

    压行真漂亮 首先这肯定是一个\(dp\)了 设\(dp_i\)表示\(i\)结尾的最长不下降子序列的长度 显然我们要找一个\(j\)来转移 也就是\(dp_i=max(dp_j+1)\) 那么什么样的 ...

  3. Kali-linux破解LM Hashes密码

    LM(LAN Manager)Hash是Windows操作系统最早使用的密码哈希算法之一.在Windows 2000.XP.Vista和Windows 7中使用了更先进的NTLMv2之前,这是唯一可用 ...

  4. Qt之操作数据库(SQLite)实例

    QtSql模块提供了与平台以及数据库种类无关的访问SQL数据库的接口,这个接口由利用Qt的模型视图结构将数据库与用户界面集成的一套类来支持.QSqlDatabase对象象征了数据库的关联.Qt使用驱动 ...

  5. notepad++怎样添加文件目录

    需要安装一个Explorer.dll文件 方法一:这个方法我个人试了不成功,可能因为版本问题,进入后选择Explorer进行安装 方法二:网上下载      Explorer.dll文件,放到\\No ...

  6. 理解numpy dot函数

    python代码 x = np.array([[1,3],[1,4]]) y = np.array([[2,2],[3,1]]) print np.dot(x,y) 结果 [[11 5] [14 6] ...

  7. css 尾巴

    用border制作三角形 <!DOCTYPE html> <html lang="en"> <head> <meta charset=&q ...

  8. 帝国CMS站点迁移

    1.重新安装xmapp环境 安装包地址 链接:https://pan.baidu.com/s/1OSwlP90G9VMAZYVXMG245Q 提取码:gnfr 2.安装后启动 3.复制数据库信息 将旧 ...

  9. 大数据学习--day14(String--StringBuffer--StringBuilder 源码分析、性能比较)

    String--StringBuffer--StringBuilder 源码分析.性能比较 站在优秀博客的肩上看问题:https://www.cnblogs.com/dolphin0520/p/377 ...

  10. 树莓派3B+学习笔记:6、安装TeamViewer

    TeamViewer是一个远程控制软件,它可以在任何防火墙和NAT代理的后台实现桌面共享和文件传输,界面简洁,操作简单,不需要专业知识就可轻松上手. TeamViewer电脑端下载网址www.team ...