D. Restoring Numbers
 

Vasya had two arrays consisting of non-negative integers: a of size n and b of size m. Vasya chose a positive integerk and created an n × m matrix v using the following formula:

Vasya wrote down matrix v on a piece of paper and put it in the table.

A year later Vasya was cleaning his table when he found a piece of paper containing an n × m matrix w. He remembered making a matrix one day by the rules given above but he was not sure if he had found the paper with the matrix v from those days. Your task is to find out if the matrix w that you've found could have been obtained by following these rules and if it could, then for what numbers k, a1, a2, ..., an, b1, b2, ..., bm it is possible.

Input

The first line contains integers n and m (1 ≤ n, m ≤ 100), separated by a space — the number of rows and columns in the found matrix, respectively.

The i-th of the following lines contains numbers wi, 1, wi, 2, ..., wi, m (0 ≤ wi, j ≤ 109), separated by spaces — the elements of the i-th row of matrix w.

Output

If the matrix w could not have been obtained in the manner described above, print "NO" (without quotes) in the single line of output.

Otherwise, print four lines.

In the first line print "YES" (without quotes).

In the second line print an integer k (1 ≤ k ≤ 1018). Note that each element of table w should be in range between 0and k - 1 inclusively.

In the third line print n integers a1, a2, ..., an (0 ≤ ai ≤ 1018), separated by spaces.

In the fourth line print m integers b1, b2, ..., bm (0 ≤ bi ≤ 1018), separated by spaces.

有 a 数列 长度为n b 数列长度为m 都是非负整数, 然后 他们两个数组组成一个n*m的矩阵,然后 w[i][j]=(a[i]+b[j])%m;

最后给出了这个矩阵和n 和m 就数列 a 和 数列 b 还有m , 令 a[0]-p=0;

那么我们得到了一个数列 0,a[2]-p-x1k...a[n]-xnk-p-  ; b[1]+p-y1k...b[n]+p- yn k, 然后

再搞出一个矩阵 m[i][j] 然后在abs(a[i]+b[i]-w[i][j])=m[i][j] ;  当m中的每个元素都为0时 就可以知道w 中最大的那个+1就是答案了,还有就是有不为0的

可以将数列带进去看一下就发现 m[i][j]=x*k 这样求一次gcd就好了

#include <iostream>
#include <cstdio>
#include <string.h>
#include <stdlib.h>
using namespace std;
const int maxn=;
long long ma[maxn][maxn];
long long a[maxn],b[maxn];
long long e[maxn][maxn];
long long gcd(long long a, long long b){
if(b==) return a;
else return gcd(b,a%b);
}
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)==){
for(int i=; i<n; ++i)
for(int j=; j<m; ++j)
scanf("%I64d",&ma[i][j]);
a[]=;
long long K;
for(int i=; i<n; ++i)
a[i]=ma[i][]-ma[][];
for(int i=; i<m; ++i)
b[i]=ma[][i];
for(int i=; i<n; ++i)
for(int j=; j<m ; ++j)
e[i][j]=abs(a[i]+b[j]-ma[i][j]);
bool falg=false;
for(int i=; i<n; ++i)
for(int j=; j<m; ++j)
if(e[i][j]!=) falg=true;
K=;
if(falg==false){
for(int i=; i<n; ++i)
for(int j=; j<m; ++j)
K=max(K,ma[i][j]);
K++;
puts("YES");
printf("%I64d\n",K);
for(int i=; i<n; ++i)
printf("%I64d%c",(a[i]%K+K)%K,i==n-?'\n':' '); for(int i=; i<m; ++i)
printf("%I64d%c",(b[i]%K+K)%K,i==m-?'\n':' '); }else{
K=;
bool finde=false;
for(int i=; i<n; ++i){
if(finde) break;
for(int j=; j<m; ++j){
if(e[i][j]!=){
K=e[i][j];
finde=true ; break;
}
}
}
for(int i=; i<n; ++i)
for(int j= ; j<m; ++j){
K=gcd(K,e[i][j]);
}
finde=true;
for(int i=; i<n; ++i)
for(int j=; j<m; ++j)
if(ma[i][j]>=K) finde=false;
if(finde==false){
puts("NO"); continue;
}
puts("YES");
printf("%I64d\n",K);
for(int i=; i<n; ++i)
printf("%I64d%c",(a[i]%K+K)%K,i==n-?'\n':' ');
for(int i=; i<m; ++i)
printf("%I64d%c",(b[i]%K+K)%K,i==m-?'\n':' ');
} }
return ;
}

Restoring Numbers的更多相关文章

  1. codeforces 509 D. Restoring Numbers(数学+构造)

    题目链接:http://codeforces.com/problemset/problem/509/D 题意:题目给出公式w[i][j]= (a[i] + b[j])% k; 给出w,要求是否存在这样 ...

  2. 题解【CodeForces1154A】Restoring Three Numbers

    Description Polycarp has guessed three positive integers \(a\), \(b\) and \(c\). He keeps these numb ...

  3. CF1154A Restoring Three Numbers 题解

    Content 已知有三个正整数 \(a,b,c\),现在给出 \(a+b,a+c,b+c,a+b+c\)(不保证有序)的值,试求出 \(a,b,c\). 数据范围:\(2\leqslant a+b, ...

  4. Codeforces Round #279 (Div. 2) E. Restoring Increasing Sequence 二分

    E. Restoring Increasing Sequence time limit per test 1 second memory limit per test 256 megabytes in ...

  5. PatentTips – GPU Saving and Restoring Thread Group Operating State

    BACKGROUND OF THE INVENTION The present invention relates generally to single-instruction, multiple- ...

  6. Codeforces Round #623 (Div. 2, based on VK Cup 2019-2020 - Elimination Round, Engine) C. Restoring

    C. Restoring Permutation time limit per test1 second memory limit per test256 megabytes inputstandar ...

  7. Java 位运算2-LeetCode 201 Bitwise AND of Numbers Range

    在Java位运算总结-leetcode题目博文中总结了Java提供的按位运算操作符,今天又碰到LeetCode中一道按位操作的题目 Given a range [m, n] where 0 <= ...

  8. POJ 2739. Sum of Consecutive Prime Numbers

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 20050 ...

  9. [LeetCode] Add Two Numbers II 两个数字相加之二

    You are given two linked lists representing two non-negative numbers. The most significant digit com ...

随机推荐

  1. ArcGIS Server密码丢失

    http://jingyan.baidu.com/article/1e5468f90f6465484961b70d.html 1.cd D:\Program Files\ArcGIS\Server\t ...

  2. C文件流

    在Linux系统中,系统默认认为每个进程打开了3个文件,即每个进程默认可以操作3 个流,即标准输入了流(/dev/stdin),标准输出流(/dev/stdout),标准错误输出流(/dev/stde ...

  3. git的常见问题

    今天把电脑清理了下再push就出问题了 ,报这个错Failed with error: fatal: unable to access 'https://git.oschina.net/dubo_/G ...

  4. AndroidのListView之滑动列表项(点击事件和滑动事件共存)

    这里正好在项目有这么一个bt的需求,如下图ListView的item可以响应点击事件也可以响应item的左右滑动事件,两个事件可以相互独立互不影响. 听说iphone的list选项就有这样bt的功能, ...

  5. HTTP/2笔记之开篇

    前言 本系列基于HTTP/2第17个草案文档,地址就是:https://tools.ietf.org/html/draft-ietf-httpbis-http2-17. HTTP/2规范已经通过发布批 ...

  6. jQuery实例化的优势,为什么要有实例化,到底实例化后在解决什么问题?

    jQuery实例化对象的方法相比于普通方法 优势: 1.不需要出现大量的new关键字. 2.可实现链式写法. 3.书写更方便 实例化的原因: 1.实例化有利于管理程序中不同的DOM选择和处理(不同的选 ...

  7. DOM操作的性能问题

    造成DOM操作性能差的原因:1.DOM操作的实现和ECMAscript的实现是两个独立的部分,之间通过接口来完成相应的DOM操作. 2.实时查询文档得到HTML集合,重复执行查询操作.特别是lengt ...

  8. Ubuntu adb devices :???????????? no permissions (verify udev rules) 解决方法

    Ubuntu adb devices :???????????? no permissions (verify udev rules) 解决方法http://www.cnblogs.com/cat-l ...

  9. CodeForces - 512B Fox And Jumping[map优化dp]

    B. Fox And Jumping time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  10. crossdomain.xml跨域配置文件的安全注意事项

    零.绪论: 对WEB中的FLASH确实了解不多,对程序中的跨域配置也了解不多,这是自己以前写的一篇笔记,到现在也还了解不深,勉强记下来罢了,备忘. 一.什么是crossdomain.xml?这是一个f ...