最短路径:

  对于网图来说,最短路径是指两个顶点之间经过的边上权值和最少的路径,我们称第一个顶点是源点,最后一个顶点是终点

迪杰斯特拉 ( Dijkstra) 算法是并不是一下子就求出 了 Vo 到V8 的最短路径,而是一步步求出它们之间顶点的最短路径,过程中都是基于已经求出的最短路径的基础上,求得更远顶点的最短路径,最终得到你要的结果
 
JS代码:
//定义邻接矩阵
let Arr2 = [
[0, 1, 5, 65535, 65535, 65535, 65535, 65535, 65535],
[1, 0, 3, 7, 5, 65535, 65535, 65535, 65535],
[5, 3, 0, 65535, 1, 7, 65535, 65535, 65535],
[65535, 7, 65535, 0, 2, 65535, 3, 65535, 65535],
[65535, 5, 1, 2, 0, 3, 6, 9, 65535],
[65535, 65535, 7, 65535, 3, 0, 65535, 5, 65535],
[65535, 65535, 65535, 3, 6, 65535, 0, 2, 7],
[65535, 65535, 65535, 65535, 9, 5, 2, 0, 4],
[65535, 65535, 65535, 65535, 65535, 65535, 7, 4, 0],
] let numVertexes = 9, //定义顶点数
numEdges = 15; //定义边数 // 定义图结构
function MGraph() {
this.vexs = []; //顶点表
this.arc = []; // 邻接矩阵,可看作边表
this.numVertexes = null; //图中当前的顶点数
this.numEdges = null; //图中当前的边数
}
let G = new MGraph(); //创建图使用 //创建图
function createMGraph() {
G.numVertexes = numVertexes; //设置顶点数
G.numEdges = numEdges; //设置边数 //录入顶点信息
for (let i = 0; i < G.numVertexes; i++) {
G.vexs[i] = 'V' + i; //scanf('%s'); //ascii码转字符 //String.fromCharCode(i + 65);
}
console.log(G.vexs) //打印顶点 //邻接矩阵初始化
for (let i = 0; i < G.numVertexes; i++) {
G.arc[i] = [];
for (j = 0; j < G.numVertexes; j++) {
G.arc[i][j] = Arr2[i][j]; //INFINITY;
}
}
console.log(G.arc); //打印邻接矩阵
} let Pathmatirx = [] // 用于存储最短路径下标的数组,下标为各个顶点,值为下标顶点的前驱顶点
let ShortPathTable = [] //用于存储到各点最短路径的权值和 function Dijkstra() {
let k, min;
let final = [];
for (let v = 0; v < G.numVertexes; v++) {
final[v] = 0;
ShortPathTable[v] = G.arc[0][v];
Pathmatirx[v] = 0;
}
ShortPathTable[0] = 0;
final[0] = 1; for (let v = 1; v < G.numVertexes; v++) { //初始化数据
min = 65535;
for (let w = 0; w < G.numVertexes; w++) { //寻找离V0最近的顶点
if (!final[w] && ShortPathTable[w] < min) {
k = w;
min = ShortPathTable[w]; //w 顶点离V0顶点更近
}
}
final[k] = 1; //将目前找到的最近的顶点置位1
for (let w = 0; w < G.numVertexes; w++) { //修正当前最短路径及距离
if (!final[w] && (min + G.arc[k][w] < ShortPathTable[w])) { //说明找到了更短的路径,修改Pathmatirx[w]和ShortPathTable[w]
ShortPathTable[w] = min + G.arc[k][w];
Pathmatirx[w] = k;
}
}
}
} function PrintVn(Vn) {
//打印V0-Vn最短路径
console.log("%s-%s 最小权值和: %d", G.vexs[0], G.vexs[Vn], ShortPathTable[Vn]);
//打印最短路线
let temp = Vn,
str = '';
while (temp != 0) {
str = '->' + G.vexs[temp] + str
temp = Pathmatirx[temp]
}
str = 'V0' + str;
console.log('最短路线:'+str);
} createMGraph();
Dijkstra();
PrintVn(8);

运行结果:

迪杰斯特拉 ( Dijkstra) 算法是 一个按路径长度递增的次序产生最短路径的算法。时间复杂度为 O(n2),n为顶点个数,如果是从其他顶点开始,那么在原有算法的基础上再来一次循环,此时的时间复杂度为O(n3)。

JS实现最短路径之迪杰斯特拉(Dijkstra)算法的更多相关文章

  1. [C++]单源最短路径:迪杰斯特拉(Dijkstra)算法(贪心算法)

    1 Dijkstra算法 1.1 算法基本信息 解决问题/提出背景 单源最短路径(在带权有向图中,求从某顶点到其余各顶点的最短路径) 算法思想 贪心算法 按路径长度递增的次序,依次产生最短路径的算法 ...

  2. 最短路径算法-迪杰斯特拉(Dijkstra)算法在c#中的实现和生产应用

    迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径. 它的主要特点是以起始点为中心向外层层扩展(广度优先遍历思想),直到扩展到终点为止 贪心算法(Greedy ...

  3. 迪杰斯特拉Dijkstra算法介绍

    迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径. 它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止. 基本思想 通过Dijk ...

  4. 最短路径-迪杰斯特拉(dijkstra)算法及优化详解

    简介: dijkstra算法解决图论中源点到任意一点的最短路径. 算法思想: 算法特点: dijkstra算法解决赋权有向图或者无向图的单源最短路径问题,算法最终得到一个最短路径树.该算法常用于路由算 ...

  5. 最短路径 - 迪杰斯特拉(Dijkstra)算法

    对于网图来说,最短路径,是指两顶点之间经过的边上权值之和最少的路径,并且我们称路径上的第一个顶点为源点,最后一个顶点为终点.最短路径的算法主要有迪杰斯特拉(Dijkstra)算法和弗洛伊德(Floyd ...

  6. 图的最短路径---迪杰斯特拉(Dijkstra)算法浅析

    什么是最短路径 在网图和非网图中,最短路径的含义是不一样的.对于非网图没有边上的权值,所谓的最短路径,其实就是指两顶点之间经过的边数最少的路径. 对于网图,最短路径就是指两顶点之间经过的边上权值之和最 ...

  7. 单源最短路径算法:迪杰斯特拉 (Dijkstra) 算法(二)

    一.基于邻接表的Dijkstra算法 如前一篇文章所述,在 Dijkstra 的算法中,维护了两组,一组包含已经包含在最短路径树中的顶点列表,另一组包含尚未包含的顶点.使用邻接表表示,可以使用 BFS ...

  8. 单源最短路径算法:迪杰斯特拉 (Dijkstra) 算法(一)

    一.算法介绍 迪杰斯特拉算法(英语:Dijkstra's algorithm)由荷兰计算机科学家艾兹赫尔·迪杰斯特拉在1956年提出.迪杰斯特拉算法使用了广度优先搜索解决赋权有向图的单源最短路径问题. ...

  9. C# 迪杰斯特拉(Dijkstra)算法

    Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 其基本思想是,设置顶点集合S并不断地作 ...

随机推荐

  1. ClamAV学习【3】——scanmanager函数浏览

    吃饱饭继续浏览Manager.c的scanmanager函数,这个函数的功能吧,暂时理解如下. 接收一个命令行参数(经过处理的optstruct结构指针). 然后根据选项判断文件类型种类,还有一些扫描 ...

  2. java中数组的插入

    package com.hxzy.demo; import java.util.Arrays;import java.util.Scanner; public class Demo1 { public ...

  3. MysqliDb 库的一些使用简单技巧(php)

    一.分页功能 假设接口要接受输入:page, page_limit,key,value,table 来查询 table 中 key like value 的元组中以 page_limit 为 page ...

  4. Q4m使用手册

    q4m是基于mysql存储引擎的轻量级消息队列,通过扩展SQL语法来操作消息队列,使用简单,容易上手,开发人员基本不用再进行学习和熟悉.Q4M支持多发送方,多接收方,接收方相互不影响,php项目中异步 ...

  5. PHP中关于foreach的笔试题

    1,php与C++的不同之处是PHP中变量没有局部作用域,只有函数作用域和全局作用域.如下函数,在php中,$name的作用域是函数test():在C++中$name的作用域是for循环体,for循环 ...

  6. ecshop后台0day漏洞原理+利用方法 XSS+Getshll

    发布日期:2012-10.25 发布作者:dis9@ztz 漏洞类型:跨站攻击 代码执行 0x0 后台getshell 在 includes/cls_template.php fetch函数 /** ...

  7. Jmeter使用吞吐量控制器实现不同的用户操纵不同的业务

    一.需求 需求:博客系统,模拟用户真实行为,80%的用户阅读文章,20%的用户创建文章,创建文章的用户随机的删除或者修改文章. 二.脚本实现 80%的用户查看文章 20%用户创建文章 根据post_i ...

  8. Linux nl --让输出的文件内容自动加上行号

    nl命令在linux系统中用来计算文件中行号.nl 可以将输出的文件内容自动的加上行号!其默认的结果与 cat -n 有点不太一样, nl 可以将行号做比较多的显示设计,包括位数与是否自动补齐 0 等 ...

  9. 如何在Cordova Android 7.0.0 以下版本集成最新插件 极光插件为例

    前提 Cordova Android 7.0.0开始改变了项目安卓平台的架构.新建一个空项目分别添加Android 6.4.0 和 Android 7.0.0平台: cordova platform ...

  10. Spring Boot 中使用 jpa

    本文原文版权归 CSDN Hgihness 所有,此处为转载+技术收藏,如有再转请自觉于篇头处标明原文作者及出处,这是大家对作者劳动成果的自觉尊重!! 作者:Hgihness 原文:http://bl ...