【CUDA 基础】3.3 并行性表现
title: 【CUDA 基础】3.3 并行性表现
categories:
- CUDA
- Freshman
tags:
- nvprof
toc: true
date: 2018-04-15 21:17:52
Abstract: 本文主要通过nvprof工具来分析核函数的执行效率(资源利用率)
Keywords: nvprof
开篇废话
继续更新CUDA,前面为了加速概率论的学习停了一段CUDA,从今天开始继续CUDA和数学分析的更新,每一篇都写一点废话就相当于自己的日记了,之前很佩服那些写日记的人,因为根本不知道日记可以写些什么,但是现在看看,如果写一些文字记录自己,首先可以反思当下,其次是过一段时间以后可以看看自己到底有没有进步,这些都是有用的,所以大家可以略过我的废话,直接看正文。
本文的主要内容就是进一步理解线程束在硬件上执行的本质过程,结合上几篇关于执行模型的学习,本文相对简单,通过修改核函数的配置,来观察核函数的执行速度,以及分析硬件利用数据,分析性能,调整核函数配置是CUDA开发人员必须掌握的技能,本篇只研究对核函数的配置是如何影响效率的(也就是通过网格,块的配置来获得不同的执行效率。)
本文全文只用到下面的核函数
__global__ void sumMatrix(float * MatA,float * MatB,float * MatC,int nx,int ny)
{
int ix=threadIdx.x+blockDim.x*blockIdx.x;
int iy=threadIdx.y+blockDim.y*blockIdx.y;
int idx=ix+iy*ny;
if (ix<nx && iy<ny)
{
MatC[idx]=MatA[idx]+MatB[idx];
}
}
没有任何优化的最简单的二维矩阵加法。
全部代码:
int main(int argc,char** argv)
{
//printf("strating...\n");
//initDevice(0);
int nx=1<<13;
int ny=1<<13;
int nxy=nx*ny;
int nBytes=nxy*sizeof(float);
//Malloc
float* A_host=(float*)malloc(nBytes);
float* B_host=(float*)malloc(nBytes);
float* C_host=(float*)malloc(nBytes);
float* C_from_gpu=(float*)malloc(nBytes);
initialData(A_host,nxy);
initialData(B_host,nxy);
//cudaMalloc
float *A_dev=NULL;
float *B_dev=NULL;
float *C_dev=NULL;
CHECK(cudaMalloc((void**)&A_dev,nBytes));
CHECK(cudaMalloc((void**)&B_dev,nBytes));
CHECK(cudaMalloc((void**)&C_dev,nBytes));
CHECK(cudaMemcpy(A_dev,A_host,nBytes,cudaMemcpyHostToDevice));
CHECK(cudaMemcpy(B_dev,B_host,nBytes,cudaMemcpyHostToDevice));
int dimx=argc>2?atoi(argv[1]):32;
int dimy=argc>2?atoi(argv[2]):32;
double iStart,iElaps;
// 2d block and 2d grid
dim3 block(dimx,dimy);
dim3 grid((nx-1)/block.x+1,(ny-1)/block.y+1);
iStart=cpuSecond();
sumMatrix<<<grid,block>>>(A_dev,B_dev,C_dev,nx,ny);
CHECK(cudaDeviceSynchronize());
iElaps=cpuSecond()-iStart;
printf("GPU Execution configuration<<<(%d,%d),(%d,%d)|%f sec\n",
grid.x,grid.y,block.x,block.y,iElaps);
CHECK(cudaMemcpy(C_from_gpu,C_dev,nBytes,cudaMemcpyDeviceToHost));
cudaFree(A_dev);
cudaFree(B_dev);
cudaFree(C_dev);
free(A_host);
free(B_host);
free(C_host);
free(C_from_gpu);
cudaDeviceReset();
return 0;
}
可见我们用两个 8192×81928192\times 81928192×8192 的矩阵相加来测试我们效率。
注意一下这里的GPU内存,一个矩阵是 213×213×22=2282^{13}\times 2^{13}\times 2^2=2^{28}213×213×22=228 字节 也就是 256M,三个矩阵就是 768M 因为我们的GPU内存就是 2G 的,所以我们没办法进行更大的矩阵计算了(无法使用原文使用的是 2142^{14}214 的方矩阵)。
用 nvprof 检测活跃的线程束
完整内容https://face2ai.com/CUDA-F-3-3-并行性表现/
【CUDA 基础】3.3 并行性表现的更多相关文章
- 【CUDA 基础】6.2 并发内核执行
title: [CUDA 基础]6.2 并发内核执行 categories: - CUDA - Freshman tags: - 流 - 事件 - 深度优先 - 广度优先 - 硬件工作队列 - 默认流 ...
- 【CUDA 基础】3.4 避免分支分化
- title: [CUDA 基础]3.4 避免分支分化 categories: - CUDA - Freshman tags: - 规约问题 - 分支分化 toc: true date: 2018- ...
- CUDA基础介绍
一.GPU简介 1985年8月20日ATi公司成立,同年10月ATi使用ASIC技术开发出了第一款图形芯片和图形卡,1992年4月ATi发布了Mach32图形卡集成了图形加速功能,1998年4月ATi ...
- 【CUDA 基础】6.5 流回调
title: [CUDA 基础]6.5 流回调 categories: - CUDA - Freshman tags: - 流回调 toc: true date: 2018-06-20 21:56:1 ...
- 【CUDA 基础】6.3 重叠内和执行和数据传输
title: [CUDA 基础]6.3 重叠内和执行和数据传输 categories: - CUDA - Freshman tags: - 深度优先 - 广度优先 toc: true date: 20 ...
- 【CUDA 基础】6.1 流和事件概述
title: [CUDA 基础]6.1 流和事件概述 categories: - CUDA - Freshman tags: - 流 - 事件 toc: true date: 2018-06-10 2 ...
- 【CUDA 基础】6.0 流和并发
title: [CUDA 基础]6.0 流和并发 categories: - CUDA - Freshman tags: - 流 - 事件 - 网格级并行 - 同步机制 - NVVP toc: tru ...
- 【CUDA 基础】5.6 线程束洗牌指令
title: [CUDA 基础]5.6 线程束洗牌指令 categories: - CUDA - Freshman tags: - 线程束洗牌指令 toc: true date: 2018-06-06 ...
- 【CUDA 基础】5.4 合并的全局内存访问
title: [CUDA 基础]5.4 合并的全局内存访问 categories: - CUDA - Freshman tags: - 合并 - 转置 toc: true date: 2018-06- ...
随机推荐
- tensorflow零起点快速入门(5) --强化学习摘录截图
tf.random_normal_initializer tf的GraphKeys用法 tf.reduce_mean tf.squared_difference 非tf中的zip,python的zip ...
- OnMouseWheel的通常处理
BOOL CMainWindow::OnMouseWheel(UINT nFlags, short zDelta, CPoint point) { BOOL bUp = TRUE; int nDelt ...
- 作业8:常用java命令(二)
一.jinfo(Configuration Info for Java) 1.功能:jinfo可以实时地查看和调整虚拟机的各项参数. 2.参数: 选项 作用 -flag name 打印改名字的VM设置 ...
- asp.net 6.aspx页面
1.aspx页面的头部 <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Us ...
- centos7---ansible批量部署
CentOS7系统 ansible自动化部署多台服务器部署 Ansible工作机制 从图中可以看出ansible分为以下几个部份: 1> Control Node:控制机器2> In ...
- [git] Updates were rejected because the tip of your current branch is behind its remote counterpart.
场景 $ git push To https://github.com/XXX/XXX ! [rejected] dev -> dev (non-fast-forward) error: fai ...
- CTF 常见操作总结
一般流程 首先看header, veiwsource, 目录扫描 有登陆, 尝试sql注入&爆破 有数据库, 必然sql注入? 普通sql注入 判断是否存在回显异常 尝试单双引号 查是字符型? ...
- JavaJDBC【三、增删改查】
获取数据库连接后,可进行增删改查操作 语句生成: Statement s = con.createStatement(sql); //生成语句 PreparedStatement ps = (Prep ...
- DBUtils封装数据库返回对象的各种方法
①ArrayHandler: 将查询结果的第一行数据,保存到Object数组中 ②ArrayListHandler 将查询的结果,每一行先封装到Object数组中,然后将数 ...
- servlet遇到的问题
1 创建web项目没有xml自动生成 2 servlet 忽然报奇怪500错误 出现的BUG原因 JAVA bean没有设置 自动导入了其他User包