在一个 $N$ 个元素集合中的所有子集中选择若干个,且交集大小为 $k$ 的方案数.

按照之前的套路,令 $f[k]$ 表示钦定交集大小为 $k$,其余随便选的方案数. 令 $g[k]$ 表示交集恰好为 $k$ 的方案数.
则有 $f[k]=\sum_{i=k}^{n}\binom{i}{k}g[k]$,反演得 $g[k]=\sum_{i=k}^{n}(-1)^{i-k}\binom{i}{k}f[i]$
而 $f[k]=\binom{n}{k}2^{2^{n-k}}$,直接带入求值即可.

code:

#include <bits/stdc++.h>
#define N 1000005
#define LL long long
using namespace std;
const LL mod=1000000007;
void setIO(string s)
{
string in=s+".in";
string out=s+".out";
freopen(in.c_str(),"r",stdin);
}
int a[N];
LL fac[N],inv[N],f[N],g[N],poww[N];
LL qpow(LL x,LL y)
{
LL tmp=1ll;
for(;y;y>>=1,x=x*x%mod)
if(y&1) tmp=tmp*x%mod;
return tmp;
}
LL Inv(LL x) { return qpow(x,mod-2); }
LL C(int x,int y)
{
return fac[x]*inv[y]%mod*inv[x-y]%mod;
}
int main()
{
// setIO("input");
int i,j,n,k;
fac[0]=inv[0]=poww[0]=1ll;
scanf("%d%d",&n,&k);
for(i=1;i<=n;++i) fac[i]=fac[i-1]*1ll*i%mod,inv[i]=Inv(fac[i]),poww[i]=poww[i-1]*2ll%(mod-1);
for(i=0;i<=n;++i) f[i]=C(n,i)*qpow(2,poww[n-i])%mod;
LL ans=0ll;
for(i=k;i<=n;++i) (ans+=(qpow(-1,i-k)*C(i,k)%mod*f[i]%mod+mod)%mod)%=mod;
printf("%lld\n",ans);
return 0;
}

  

BZOJ 2839: 集合计数 广义容斥的更多相关文章

  1. BZOJ2839 : 集合计数 (广义容斥定理)

    题目 一个有 \(N\) 个 元素的集合有 \(2^N\) 个不同子集(包含空集), 现在要在这 \(2^N\) 个集合中取出若干集合(至少一个), 使得它们的交集的元素个数为 \(K\) ,求取法的 ...

  2. 【BZOJ2839】集合计数(容斥,动态规划)

    [BZOJ2839]集合计数(容斥,动态规划) 题面 BZOJ 权限题 Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使 ...

  3. BZOJ 2839: 集合计数 解题报告

    BZOJ 2839: 集合计数 Description 一个有\(N\)个元素的集合有\(2^N\)个不同子集(包含空集),现在要在这\(2^N\)个集合中取出若干集合(至少一个),使得 它们的交集的 ...

  4. bzoj 2839 集合计数 容斥\广义容斥

    LINK:集合计数 容斥简单题 却引出我对广义容斥的深思. 一直以来我都不理解广义容斥是为什么 在什么情况下使用. 给一张图: 这张图想要表达的意思就是这道题目的意思 而求的东西也和题目一致. 特点: ...

  5. BZOJ 2839: 集合计数 [容斥原理 组合]

    2839: 集合计数 题意:n个元素的集合,选出若干子集使得交集大小为k,求方案数 先选出k个\(\binom{n}{k}\),剩下选出一些集合交集为空集 考虑容斥 \[ 交集为\emptyset = ...

  6. bzoj2839 集合计数(容斥)

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 883  Solved: 490[Submit][Status][Discuss] ...

  7. Bzoj 2839 集合计数 题解

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 495  Solved: 271[Submit][Status][Discuss] ...

  8. ●BZOJ 2839 集合计数

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2839 题解: 容斥原理 真的是神题!!! 定义 f[k] 表示交集大小至少为 k时的方案数怎 ...

  9. 【BZOJ2839】集合计数 组合数+容斥

    [BZOJ2839]集合计数 Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数 ...

随机推荐

  1. 『Python基础练习题』day05

    # 请将列表中的每个元素通过 "_" 链接起来. users = ['毛利兰', '柯南', '怪盗基德'] # 请将元组 v1 = (11, 22, 33) 中的所有元素追加到列 ...

  2. CH01-ZYNQ修炼秘籍-LINUX篇-虚拟机环境搭建

    CH01基于Ubuntu系统的ZYNQ-7000开发环境的搭建 1.1概述 实验环境: Windows 10 专业版 Vmware workstation 14.1.1 Ubuntu 16.04.3 ...

  3. zabbix添加自定义监控(自动发现)遇到的问题

    问题:zabbix添加自动发现端口,提示Value should be a JSON object [root@localhost zabbix_agentd.d]# zabbix_get -s 19 ...

  4. Istio最佳实践:在K8s上通过Istio服务网格进行灰度发布

    Istio是什么? Istio是Google继Kubernetes之后的又一开源力作,主要参与的公司包括Google,IBM,Lyft等公司.它提供了完整的非侵入式的微服务治理解决方案,包含微服务的管 ...

  5. ubuntu下tftp的安装、配置、使用

    1. 安装 sudo apt-get install tftp-hpa tftpd-hpa -y 2. 配置 sudo vi /etc/default/tftpd-hpa #/etc/default/ ...

  6. Express配置ssl证书,为网站开启https

    本文不对express多做介绍,下面直奔主题: 一.下载证书(以腾讯云为例): 解压下载的压缩包,找到Nginx文件夹,里面有两个以crt和key结尾的文件,在你的项目根目录新建名为https的空文件 ...

  7. Powershell学习笔记:(一)、初识Powershell

    什么是Powershell? MSDN上的说明是:PowerShell 是构建于 .NET 上基于任务的命令行 shell 和脚本语言. PowerShell 可帮助系统管理员和高级用户快速自动执行用 ...

  8. win10重装系统修改信息

    在安装win10系统之前要先进行ahci硬盘模式更改 ,以防止win10系统安装完成后出现蓝屏现象,那么如何进行ahci硬盘模式bios设置呢?今天我们就以映泰主板为大家介绍u盘装win10系统硬盘模 ...

  9. python简单页面爬虫入门 BeautifulSoup实现

    本文可快速搭建爬虫环境,并实现简单页面解析 1.安装 python 下载地址:https://www.python.org/downloads/ 选择对应版本,常用版本有2.7.3.4 安装后,将安装 ...

  10. iptables的nat规则骚操作

    水一枪 我对防火墙这块的认知是比较低的, 之前一直没怎么去用 最多的要么就是 iptables -A INPUT -p tcp --dport 80 -j ACCEPT iptables -A OUT ...