「CF375E」Red and Black Tree「树形DP」
题意
给定一个结点颜色红或黑的树,问最少进行多少次交换黑、红结点使得每个红结点离最近的黑结点距离\(\leq x\)。
\(1\leq n \leq 500, 1 \leq x \leq 10^9\)
题解
不是红黑树
据说可有单纯形做,这里讲的还是树形dp的做法
考虑交换比较费劲,直接在\(n\)个结点里选\(m\)个(\(m\)是黑结点个数),如果原来是红结点产生\(1\)的代价
\(dp[u][k][a]\)表示\(u\)子树内选了\(k\)个黑点,\(u\)选择的黑结点是\(a\)(这里为了方便,不定义为最近的黑结点)的最小代价(若\(a\)在子树外,不考虑\(a\)的代价)。这个状态相当于树形背包加一维。
考虑转移:新加入了子树\(v\)。原信息\(dp[u][su][a]\),子树信息\(dp[v][su][b]\)
- \(a=b\):加起来转移到\(dp[u][su + sv][a]\)上。
- \(b\)在\(v\)子树中:此时a一定不在\(v\)子树中。如果在子树中只要考虑\(a = b\),上面考虑过了。加起来转移到\(dp[u][su + sv][a]\)。(实现时直接对于每个子树外的\(a\)加上最小dp值就好)
- \(b\)在\(v\)子树外:这时候\(a\not =b\)一定是不优的。\(a\)在\(v\)子树内,把b改\(a\)不会更差;a也不在\(v\)子树中,让\(a=b\)或\(b=a\)一定有一种不会更差。所以不转移。
注意使用short类型防止MLE。
#include <algorithm>
#include <cstdio>
using namespace std;
const int N = 505;
struct Edge {
short v, nxt; int w;
} e[N * 2];
short hd[N], sz[N], pos[N], w[N], n, m, ec;
short dl[N], dr[N], idx, dp[N][N][N], t[N][N];
int x, dis[N][N];
void clr() {
fill(hd + 1, hd + n + 1, -1); ec = 0;
}
void add(short u, short v, int w) {
e[ec] = (Edge) {v, hd[u], w}; hd[u] = ec ++;
}
void dfs0(int *d, int u, int fa = 0) {
if(!fa) d[u] = 0;
for(int i = hd[u]; ~ i; i = e[i].nxt) {
Edge &p = e[i];
if(p.v != fa) {
d[p.v] = min(x + 1, d[u] + p.w);
dfs0(d, p.v, u);
}
}
}
void dfs1(int u, int fa = 0) {
dl[u] = ++ idx; pos[idx] = u;
for(int i = hd[u]; ~ i; i = e[i].nxt) {
int v = e[i].v;
if(v != fa) dfs1(v, u);
}
dr[u] = idx;
}
void dfs(int u, int fa = 0) {
for(int v = 1; v <= n; v ++) {
if(dis[u][v] <= x && u != v) {
dp[u][0][v] = 0;
}
}
dp[u][1][u] = w[u] ^ 1; sz[u] = 1;
for(short i = hd[u]; ~ i; i = e[i].nxt) {
int v = e[i].v;
if(v == fa) continue ;
dfs(v, u);
for(short s = min(sz[v] + sz[u], (int) m); s >= 0; s --)
for(short a = 1; a <= n; a ++)
t[s][a] = n + 1;
for(short su = min(sz[u], m); su >= 0; su --) {
for(short sv = min(sz[v], m); sv >= 0; sv --) {
short mv = n + 1;
for(int a = dl[v]; a <= dr[v]; a ++) mv = min(mv, dp[v][sv][pos[a]]);
for(int a = 1; a <= n; a ++) {
t[su + sv][a] = min((int) t[su + sv][a], dp[u][su][a] + dp[v][sv][a]);
if(a < dl[v] || a > dr[v]) {
t[su + sv][pos[a]] = min((int) t[su + sv][pos[a]], dp[u][su][pos[a]] + mv);
}
}
}
}
sz[u] += sz[v];
for(short s = min(sz[u], m); s >= 0; s --)
for(short a = 1; a <= n; a ++)
dp[u][s][a] = t[s][a];
}
}
int main() {
scanf("%hd%d", &n, &x); clr();
for(int i = 1; i <= n; i ++) {
scanf("%hd", w + i);
m += w[i];
}
for(int u, v, w, i = 1; i < n; i ++) {
scanf("%d%d%d", &u, &v, &w);
add(u, v, w); add(v, u, w);
}
for(int i = 1; i <= n; i ++) dfs0(dis[i], i);
for(int i = 0; i <= n; i ++)
for(int j = 0; j <= n; j ++)
for(int k = 0; k <= n; k ++)
dp[i][j][k] = n + 1;
dfs1(1); dfs(1);
short ans = n + 1;
for(int i = 1; i <= n; i ++)
ans = min(ans, dp[1][m][i]);
printf("%hd\n", ans > n ? -1 : ans);
return 0;
}
「CF375E」Red and Black Tree「树形DP」的更多相关文章
- 「树形结构 / 树形DP」总结
Codeforces 686 D. Kay and Snowflake 要求$O(n)$求出以每个节点为根的重心. 考虑对于一个根节点$u$,其重心一定在[各个子树的重心到$u$]这条链上.这样就能够 ...
- HDU5834 Magic boy Bi Luo with his excited tree(树形DP)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5834 Description Bi Luo is a magic boy, he also ...
- BZOJ-3227 红黑树(tree) 树形DP
个人认为比较好的(高端)树形DP,也有可能是人傻 3227: [Sdoi2008]红黑树(tree) Time Limit: 10 Sec Memory Limit: 128 MB Submit: 1 ...
- Codeforces Round #263 (Div. 2) D. Appleman and Tree(树形DP)
题目链接 D. Appleman and Tree time limit per test :2 seconds memory limit per test: 256 megabytes input ...
- 2017 Multi-University Training Contest - Team 1 1003&&HDU 6035 Colorful Tree【树形dp】
Colorful Tree Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)T ...
- 「树形DP」洛谷P2607 [ZJOI2008]骑士
P2607 [ZJOI2008]骑士 题面: 题目描述 Z 国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬. 最近发生了一件可怕的事情,邪恶的 ...
- 「HAOI2015树上染色」「树形DP」
其实我还不大会树形DP 此题就当练手叭,缕一下思路就好 题目链接 BZOJ4033 题目大意就是给一棵树,对一部分点染成黑色,剩下的为白色,问所有同色点距离之和....... 简明扼要的题意,然额我不 ...
- NFLSOJ #10317. -「2020联考北附2」三千世界(找等价表达+树形 dp)
题面传送门 出题人可能原本感觉没啥难度的 T2 竟然变成了防 AK 题,奇迹奇迹( 首先带着这个 \(\max\) 肯定不太好处理,考虑找出 \(f(S)\) 的等价表达.我们考虑以 \(1\) 为根 ...
- HDU 6035---Colorful Tree(树形DP)
题目链接 Problem Description There is a tree with n nodes, each of which has a type of color represented ...
随机推荐
- PPPoE中间人拦截以及校园网突破漫谈
本文首发于PPPoE中间人拦截以及校园网突破漫谈,转载请注明出处. PPPoE中间人拦截以及校园网突破漫谈 校园生活快结束了,之前还有点未完成的想法,趁着这两天有兴趣搞搞. 此文面向大众是那种在校园内 ...
- JNI创建共享内存导致JVM terminated的问题解决(segfault,shared memory,内存越界,内存泄漏,共享内存)
此问题研究了将近一个月,最终发现由于JNI不支持C中创建共享内存而导致虚拟机无法识别这块共享内存,造成内存冲突,最终虚拟机崩溃. 注意:JNI的C部分所使用的内存也是由JVM创建并管理的,所以C创建了 ...
- ORACLE锁表查询及解锁方法
--查看锁表情况 select distinct a.sid, to_char(a.logon_time, 'YYYY-MM-DD HH24:mi:ss') loginTime, a.serial#, ...
- Java Web-JQuery学习
Java Web-JQuery学习 JQuery概念 是一个JS框架,可以用来简化JS的开发,设计宗旨是"write less,do more",即写更少的代码,做更多的事情.它封 ...
- sql 防注入(更新问题)
一下这条语句虽然不会是数据表中的数据发生变化,但是会对数据库主从造成影响 update `article` where `article_id` = '40&n974742=v995656' ...
- iOS 数据源切换混乱问题
问题场景 这个问题遇到是偶然的,正常来说是不会出现的.但是有时候在一些极端操作情况下,还是出现了. 现在我说明下这个场景.页面上是一个tableview,那对应的有一个dataSource,页面顶部有 ...
- 使用abapGit在ABAP On-Premises系统和SAP云平台ABAP环境之间进行代码传输
SAP ABAP顾问朋友们,应该都使用过SAPLink这个工具.如果两个ABAP Netweaver系统没有建立起传输路径时,我们无法使用标准的SE10事务码创建传输请求的方式进行这两个系统间的代码传 ...
- hive分区理念介绍
一.背景 1.在Hive Select查询中一般会扫描整个表内容,会消耗很多时间做没必要的工作.有时候只需要扫描表中关心的一部分数据,因此建表时引入了partition概念. 2.分区表指的是在创建表 ...
- Dumpsys Alarm查看应用程序唤醒命令
Dumpsys alarm查看应用程序唤醒命令: 在安卓adb root进如命令行后(没有root或者root群组的权限执行不了该命令), 1. <span style="font-s ...
- Formal Analysis of the TLS Handshake Protocol -----论文整理
1.关键词 TLS.SSL.Formal Analsysis Conridentiality Secerecy 2.Table THE SSL/TLS handshake Protocol 3 ...