Fibonacci数性质
Fibonacci数性质
0.\(F_{n-1}+F_{n-2}=F_{n} ,特殊的 F_{0}=1,F_{1}=1\)
上述式子为定义式
1.\(F_{0}+F_{1}+...+F_{n}=F_{n+2}-1\)
证明:
\(F_0+F_1=F_2\)
\(F_1+F_2=F_3\)
\(F_2+F_3=F_4\)
\(\vdots\)
\(F_{n}+F_{n+1}=F_{n+2}\)
\(F_{0}+2F_{1}+2F_{2}+...+2F_{n}+F_{n+1}=F_1+F_2+...+F_{n+2}\)
\(F_0+F_1+F_2+...+F_{n}+F_{n+1}=F_{n+2}-F_{1}=F_{n+2}-1\)
2.\(F_{1}+F_{3}+...+F_{2n-1}=F_{2n}\)
证明:
\(F_{1}=F_{0}+1\)
\(F_{3}=F_{2}+F_{1}\)
\(\vdots\)
\(F_{2n-1}=F_{2n-2}+F_{2n-3}\)
\(F_{1}+F_{3}+...+F_{2n-1}=1+F_{0}+F_{1}+F_{2}+...+F_{2n-3}+F_{2n-2}=1+F_{2n}-1=F_{2n}\)
3.\(F_0+F_2+...+F_{2n}=F_{2n+1}-1\)
证明:
有 \(F_0+F_1+...+F_n=F_{n+2}-1\) 和 \(F_1+F_3+...+F_{2n-1}=F_{2n}\)
$F_0+F_2...+F_{2n}=F_{2n+2}-F_{2n}-1=F_{2n+1}-1 $
4.\(F_0^2+F_1^2+F_2^2+...F_{n-1}^2+F_n^2=F_n F_{n+1}\)
证明:
有 \(F_0^2=F_0*F_1\) ,假设有 \(F_{0}^2+F_1^2+F_2^2+...+F_{n-1}^2=F_{n-1} F_{n}\)
那么 \(F_0^2+F_1^2+...+F^2_{n-1}+F^2_{n}=F_{n-1}F_{n}+F_{n}^2=F_{n}F_{n+1}\)
5.\(F_{n+2}+F_{n-2}=3\times F_{n}\)
证明:
\(F_{n+2}=F_{n+1}+F_{n}=(F_{n}+F_{n-1})+F_{n}=(F_{n}+(F_{n}-F_{n-2}))+F_{n}=3\times F_{n}-F_{n-2}\)
6.\(gcd(F_{n+1},F_{n})=1\)
证明:
根据辗转相减法则
$ gcd(F_{n+1},F_{n}) =gcd(F_{n+1}-F_{n},F_{n}) =gcd(F_{n},F_{n-1}) =gcd(F_{2},F_{1}) =1$
7.\(F_{m+n}=F_{m-1}F_{n}+F_{m}F_{n+1}\)
把\(F_n\)看做斐波那契的第1项,那么到第\(F_{n+m}\)项时,系数为\(F_{m-1}\)
把\(F_{n+1}\)看做斐波那契的第2项,那么到第\(F_{n+m}\)项时,系数为\(F_{m}\)
8.\(gcd(F_{n+m},F_{n})=gcd(F_{n},F_{m})\)
证明:
\(gcd(F_{n+m},F_{n})=gcd(F_{n+1}F_{m}+F_{n}F_{m-1},F_{n})=gcd(F_{n+1}F_{m},F_{n})=gcd(F_{m},F_{n})\)
9.\(gcd(F_{n},F_{m})=F_{gcd(n,m)}\)
由8式得,Fibonacci数满足下标的辗转相减
\(gcd(F_n,F_m)=gcd(F_{gcd(n,m)},F_{gcd(n,m)})=F_{gcd(n,m)}\)
Fibonacci数性质的更多相关文章
- 关于java的递归写法,经典的Fibonacci数的问题
经典的Fibonacci数的问题 主要想展示一下迭代与递归,以及尾递归的三种写法,以及他们各自的时间性能. public class Fibonacci { /*迭代*/ public static ...
- java 练手 Fibonacci数
Problem B Fibonacci数 时间限制:3000 ms | 内存限制:65535 KB 描述 无穷数列1,1,2,3,5,8,13,21,34,55...称为Fibonacci数列 ...
- 1143 多少个Fibonacci数
时间限制:500MS 内存限制:65536K提交次数:270 通过次数:16 题型: 编程题 语言: C++;C Description 给你如下Fibonacci 数的定义: F1 = 1 F ...
- Fibonacci数
Fibonacci数 时间限制:3000 ms | 内存限制:65535 KB 难度:1 描述 无穷数列1,1,2,3,5,8,13,21,34,55...称为Fibonacci数列,它可以递 ...
- 每日一小练——高速Fibonacci数算法
上得厅堂,下得厨房,写得代码,翻得围墙,欢迎来到睿不可挡的每日一小练! 题目:高速Fibonacci数算法 内容:先说说Fibonacci数列,它的定义是数列:f1,f2....fn有例如以下规律: ...
- 一个小的日常实践——高速Fibonacci数算法
上得厅堂.下得厨房.写得代码,翻得围墙,欢迎来到睿不可挡的每日一小练! 题目:高速Fibonacci数算法 内容:先说说Fibonacci数列,它的定义是数列:f1,f2....fn有例如以下规律: ...
- ACM Fibonacci数 计算
Fibonacci数 时间限制:3000 ms | 内存限制:65535 KB 难度:1 描述 无穷数列1,1,2,3,5,8,13,21,34,55...称为Fibonacci数列,它可以递 ...
- 计算fibonacci数(多种方法)
#include <iostream> using namespace std; //计算fibonacci数 //方法一:二分递归法,时间复杂度为O(2^n),额外空间复杂度为常数 in ...
- 利用JavaScript打印出Fibonacci数(不使用全局变量)
从汤姆大叔的博客里看到了6个基础题目:本篇是第4题 - 利用JavaScript打印出Fibonacci数(不使用全局变量) 解题关键: 1.Fibonacci数列的规律 2.递归 解点1:Fibon ...
随机推荐
- [官网]PG12发布了
PostgreSQL 12 Press Kit https://www.postgresql.org/about/press/presskit12/zh/#original_release Conte ...
- Centos6.5镜像下载
CentOS6.5系统安装 1.首先打开网易开源镜像站: http://mirrors.163.com/ 当然,大家也可以使用阿里开源镜像站:http://mirrors.aliyun.com/ 2. ...
- 【数据结构】P1165 日志分析
题目描述 MM 海运公司最近要对旗下仓库的货物进出情况进行统计.目前他们所拥有的唯一记录就是一个记录集装箱进出情况的日志.该日志记录了两类操作:第一类操作为集装箱入库操作,以及该次入库的集装箱重量:第 ...
- 数据库设计_ERMaster安装使用_PowerDesigner数据设计工具
数据库设计 1. 说在前面 项目开发的流程包括哪些环节 需求调研[需求调研报告]-- 公司决策层 (1) 根据市场公司需求分析公司是否需要开发软件来辅助日常工作 (2) 公司高层市场考察,市场分析,决 ...
- 怎样确保页面中的js代码一定是在DOM结构生成之后再调用
有这样一类问题, 如下所示, 就是在dom结构没有生成时就在js代码中调用了, 此时就会报错: <head> <script> console.log(document.bod ...
- 浅谈.NET中的类型和装箱、拆箱原理
谈到装箱拆箱,大概的意思就是值类型和引用类型的相互转换呗---值类型到引用类型叫装箱,反之则叫拆箱.这当然没有问题,可是你只知道这么多,那么建议你花点时间看看楼主这篇文章 1. .NET中的类型 为了 ...
- sql 触发器里,发生错误,回滚提示错误语句
SET @msg='错误消息'; RAISERROR(@msg, 16, 1); ROLLBACK TRANSACTION; ...
- WebAPI 笔记
一.基本配置 1. 全局配置 Global.asax public class WebApiApplication : System.Web.HttpApplication { protected v ...
- Linux 命令集锦
linux 一切从根开始,一切皆文件~ 让我们从一些命令开始了解吧 基本命令 man command:manual:查看命令帮助手册 ls:list:查看当前文件夹下的内容 -a 查看所有内容,包含 ...
- 【php socket通讯】php实现http服务
http服务是建立在tcp服务之上的,它是tcp/ip协议的应用,前面我们已经实现了tcp服务,并且使用三种不同的方式连接tcp服务 php中连接tcp服务的三种方式 既然http也是tcp应用层的一 ...