Fibonacci数性质

0.\(F_{n-1}+F_{n-2}=F_{n} ,特殊的 F_{0}=1,F_{1}=1\)

上述式子为定义式

1.\(F_{0}+F_{1}+...+F_{n}=F_{n+2}-1\)

证明:

\(F_0+F_1=F_2\)

\(F_1+F_2=F_3\)

\(F_2+F_3=F_4\)

\(\vdots\)

\(F_{n}+F_{n+1}=F_{n+2}\)

\(F_{0}+2F_{1}+2F_{2}+...+2F_{n}+F_{n+1}=F_1+F_2+...+F_{n+2}\)

\(F_0+F_1+F_2+...+F_{n}+F_{n+1}=F_{n+2}-F_{1}=F_{n+2}-1\)

2.\(F_{1}+F_{3}+...+F_{2n-1}=F_{2n}\)

证明

\(F_{1}=F_{0}+1\)

\(F_{3}=F_{2}+F_{1}\)

\(\vdots\)

\(F_{2n-1}=F_{2n-2}+F_{2n-3}\)

\(F_{1}+F_{3}+...+F_{2n-1}=1+F_{0}+F_{1}+F_{2}+...+F_{2n-3}+F_{2n-2}=1+F_{2n}-1=F_{2n}\)

3.\(F_0+F_2+...+F_{2n}=F_{2n+1}-1\)

证明:

有 \(F_0+F_1+...+F_n=F_{n+2}-1\) 和 \(F_1+F_3+...+F_{2n-1}=F_{2n}\)

$F_0+F_2...+F_{2n}=F_{2n+2}-F_{2n}-1=F_{2n+1}-1 $

4.\(F_0^2+F_1^2+F_2^2+...F_{n-1}^2+F_n^2=F_n F_{n+1}\)

证明

有 \(F_0^2=F_0*F_1\) ,假设有 \(F_{0}^2+F_1^2+F_2^2+...+F_{n-1}^2=F_{n-1} F_{n}\)

那么 \(F_0^2+F_1^2+...+F^2_{n-1}+F^2_{n}=F_{n-1}F_{n}+F_{n}^2=F_{n}F_{n+1}\)

5.\(F_{n+2}+F_{n-2}=3\times F_{n}\)

证明

\(F_{n+2}=F_{n+1}+F_{n}=(F_{n}+F_{n-1})+F_{n}=(F_{n}+(F_{n}-F_{n-2}))+F_{n}=3\times F_{n}-F_{n-2}\)

6.\(gcd(F_{n+1},F_{n})=1\)

证明:
根据辗转相减法则
$ gcd(F_{n+1},F_{n}) =gcd(F_{n+1}-F_{n},F_{n}) =gcd(F_{n},F_{n-1}) =gcd(F_{2},F_{1}) =1$

7.\(F_{m+n}=F_{m-1}F_{n}+F_{m}F_{n+1}\)

把\(F_n\)看做斐波那契的第1项,那么到第\(F_{n+m}\)项时,系数为\(F_{m-1}\)

把\(F_{n+1}\)看做斐波那契的第2项,那么到第\(F_{n+m}\)项时,系数为\(F_{m}\)

8.\(gcd(F_{n+m},F_{n})=gcd(F_{n},F_{m})\)

证明:
\(gcd(F_{n+m},F_{n})=gcd(F_{n+1}F_{m}+F_{n}F_{m-1},F_{n})=gcd(F_{n+1}F_{m},F_{n})=gcd(F_{m},F_{n})\)

9.\(gcd(F_{n},F_{m})=F_{gcd(n,m)}\)

由8式得,Fibonacci数满足下标的辗转相减

\(gcd(F_n,F_m)=gcd(F_{gcd(n,m)},F_{gcd(n,m)})=F_{gcd(n,m)}\)

Fibonacci数性质的更多相关文章

  1. 关于java的递归写法,经典的Fibonacci数的问题

    经典的Fibonacci数的问题 主要想展示一下迭代与递归,以及尾递归的三种写法,以及他们各自的时间性能. public class Fibonacci { /*迭代*/ public static ...

  2. java 练手 Fibonacci数

    Problem B Fibonacci数 时间限制:3000 ms  |  内存限制:65535 KB   描述 无穷数列1,1,2,3,5,8,13,21,34,55...称为Fibonacci数列 ...

  3. 1143 多少个Fibonacci数

    时间限制:500MS  内存限制:65536K提交次数:270 通过次数:16 题型: 编程题   语言: C++;C Description 给你如下Fibonacci 数的定义: F1 = 1 F ...

  4. Fibonacci数

    Fibonacci数 时间限制:3000 ms  |  内存限制:65535 KB 难度:1   描述 无穷数列1,1,2,3,5,8,13,21,34,55...称为Fibonacci数列,它可以递 ...

  5. 每日一小练——高速Fibonacci数算法

    上得厅堂,下得厨房,写得代码,翻得围墙,欢迎来到睿不可挡的每日一小练! 题目:高速Fibonacci数算法 内容:先说说Fibonacci数列,它的定义是数列:f1,f2....fn有例如以下规律: ...

  6. 一个小的日常实践——高速Fibonacci数算法

    上得厅堂.下得厨房.写得代码,翻得围墙,欢迎来到睿不可挡的每日一小练! 题目:高速Fibonacci数算法 内容:先说说Fibonacci数列,它的定义是数列:f1,f2....fn有例如以下规律: ...

  7. ACM Fibonacci数 计算

    Fibonacci数 时间限制:3000 ms  |  内存限制:65535 KB 难度:1   描述 无穷数列1,1,2,3,5,8,13,21,34,55...称为Fibonacci数列,它可以递 ...

  8. 计算fibonacci数(多种方法)

    #include <iostream> using namespace std; //计算fibonacci数 //方法一:二分递归法,时间复杂度为O(2^n),额外空间复杂度为常数 in ...

  9. 利用JavaScript打印出Fibonacci数(不使用全局变量)

    从汤姆大叔的博客里看到了6个基础题目:本篇是第4题 - 利用JavaScript打印出Fibonacci数(不使用全局变量) 解题关键: 1.Fibonacci数列的规律 2.递归 解点1:Fibon ...

随机推荐

  1. [转帖]详解JVM内存布局及GC原理,值得收藏

    概述 https://www.toutiao.com/i6731345429574713868/ java发展历史上出现过很多垃圾回收器,各有各的适应场景,不仅仅是开发,作为运维也需要对这方面有一定的 ...

  2. windows使用sqlpus连接oracle 数据库

    1.先安装好Instant Client程序. 2.打开cmd 执行sqlplus命令,如果出现如下图 2.说明需要把oracle install 的bin目类 添加系统环境path中,如下图添加环境 ...

  3. VC++实现遍历指定文件夹

    VC++实现遍历指定文件夹,并进行深度遍历,一级,二级...最终列出该文件夹下所有文件全路径. #include "stdafx.h" #include <iostream& ...

  4. Erlang:[笔记三,构建工具rebar之使用依赖]

    概述 类似Java中的Maven,Gradle,在Erlang中同样也有包管理的工具,Rebar提供Erlang依赖(包)管理机制,开发人员可以重复使用已有的模块,通过rebar引入自己的项目直接使用 ...

  5. c++语法笔记(中)

    继承与派生 继承面向对象程序设计4个主要特征:抽象,封装,继承,多态性c++通过继承实现可重用性.有时两个类的内容基本相同或有一部分相同,这时可以利用原来声明的类作为基础,再加上新的内容即可,减少了工 ...

  6. LC 206. Reverse Linked List

    题目描述 Reverse a singly linked list. Example: Input: 1->2->3->4->5->NULL Output: 5-> ...

  7. RHadoop: REDUCE capability required is more than the supported max container capability in the cluster

    I have not used RHadoop. However I've had a very similar problem on my cluster, and this problem see ...

  8. python处理Excel文件的几个模块

    在python中简单地处理excel文件,有几个相关的模块,各有千秋,本文将不定时收录. Python Excel网站收集了关于python处理excel文件的各种信息. [注意]使用python处理 ...

  9. springboot + quartz

    在这里我单独整理对定时任务的使用.之前觉得用@Scheduled这个注解就可以解决,后来发现,定时任务比较多时,且时间集中在某个时间段,或者执行的时间间隔比较短时,多个任务执行就会依次执行,这就导致任 ...

  10. 利用贝叶斯算法实现手写体识别(Python)

    在开始介绍之前,先了解贝叶斯理论知识 https://www.cnblogs.com/zhoulujun/p/8893393.html 简单来说就是:贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯 ...