Closest Common Ancestors (Lca,tarjan)
午时刷题,难甚,遂小憩于桌上,惊醒,于梦中有所得,虽大声曰:吾已得tarjan之奥秘!
关于tarjan算法,其实就是一个递归加并查集的应用。
大致代码:
#include<bits/stdc++.h>
using namespace std;
int find(int x){
....
} void join(int x,int y)
{
....
}
void dfs(int x)
{
int len=v[x].size();
for(int i=; i<len; i++) //遍历x的子节点
{
dfs(v[x][i]); //继续往下推
join(v[x][i],x); //将x的所有子节点的祖先都设为x
}
vis[x] = true; //证明x走过了
for(int i=; i<=n; i++) //对每个x循环1~n
if(vis[i]&&g[x][i]) //如果i已经走过并且要求(x,i)
ans=find(i); //lca就是ans
}
由以上代码可以看出,tarjan实际上就是并查集与dfs的结合,其最核心的部分就是dfs那部分
只要理解了dfs()的内容,就能理解tarjan
而对于dfs函数,我们首先就会想到它的特性:不撞南墙不回头。
假如有一颗树,对其dfs,那么首先它会沿着一个分支一直到尽头(如图):
而当走到4这个点时,函数开始执行下列语句:
join(v[x][i],x); //将x的所有子节点的祖先都设为x
//而此时pre[4]=3;pre[3]=3;pre[2]=2;pre[1]=1;
再然后是:
vis[x] = true; //证明x走过了
for(int i=1; i<=n; i++) //对每个x循环1~n
if(vis[i]&&g[x][i]) //如果i已经走过并且要求(x,i)
ans=find(i); //lca就是ans
}
如果存在要求lca[x][i],先看i点是否走过,如果走过,那就只有一种可能(真相只有一个!真実はいつも一つ):
i,k必在两条不同分支上,并且交于某个点x,如果i已经走过了,那么,i所在的这条分支上所有的点都有明确的父子关系,即find(i)==x!
代码参上:
#pragma GCC optimize(2)
#include<stdio.h>
#include<string.h>
#include<vector>
#define M 1007
using namespace std;
int g[M][M],in[M],pre[M],cnt[M];
bool vis[M];
vector<int>v[M];
int n,m;
void init()
{
memset(g,,sizeof(g));
memset(in,,sizeof(in));
memset(cnt,,sizeof(cnt));
memset(vis,false,sizeof(vis));
for(int i=; i<=n; i++)
{
v[i].clear();
pre[i]=i;
}
}
int fond(int x)
{
return x==pre[x]?x:pre[x]=fond(pre[x]);
}
void join(int x,int y)
{
int xx=fond(x);
int yy=fond(y);
pre[xx]=yy;
}
void dfs(int x)
{
int len=v[x].size();
for(int i=; i<len; i++) //遍历x的子节点
{
dfs(v[x][i]); //继续往下推
join(v[x][i],x); //将x的所有子节点的祖先都设为x
}
vis[x] = true; //证明x走过了
for(int i=; i<=n; i++) //对每个x循环1~n
if(vis[i]&&g[x][i]) //如果i已经走过并且要求(x,i)
cnt[fond(i)]+=g[x][i]; //
}
int main()
{
while(scanf("%d",&n)!=EOF)
{
init();
int a,b,c,root;
for(int i=; i<=n; i++)
{
scanf("%d:(%d)",&a,&b);
while(b--)
{
scanf(" %d",&c);
v[a].push_back(c);
in[c]++;
}
}
scanf("%d",&m);
getchar();
while(m--)
{
scanf("(%d,%d)",&a,&b);
getchar();
g[a][b]++;
g[b][a]++;
}
for(int i=; i<=n; i++)
if(!in[i])
{
root=i;
break;
}
dfs(root);
for(int i=; i<=n; i++)
{
if(cnt[i])
printf("%d\n",i);
}
}
return ;
}
以上;
Closest Common Ancestors (Lca,tarjan)的更多相关文章
- poj 1470 Closest Common Ancestors LCA
题目链接:http://poj.org/problem?id=1470 Write a program that takes as input a rooted tree and a list of ...
- POJ1470 Closest Common Ancestors 【Tarjan的LCA】
非常裸的模版题,只是Tarjan要好好多拿出来玩味几次 非常有点巧妙呢,tarjan,大概就是当前结点和它儿子结点的羁绊 WA了俩小时,,,原因是,这个题是多数据的(还没告诉你T,用scanf!=EO ...
- POJ 1470 Closest Common Ancestors(LCA&RMQ)
题意比较费劲:输入看起来很麻烦.处理括号冒号的时候是用%1s就可以.还有就是注意它有根节点...Q次查询 在线st算法 /*************************************** ...
- POJ 1470 Closest Common Ancestors(LCA 最近公共祖先)
其实这是一个裸求LCA的题目,我使用的是离线的Tarjan算法,但是这个题的AC对于我来说却很坎坷……首先是RE,我立马想到数组开小了,然后扩大了数组,MLE了……接着把数组调整适当大小,又交了一发, ...
- POJ 1470 Closest Common Ancestors LCA题解
本题也是找LCA的题目,只是要求多次查询.一般的暴力查询就必定超时了,故此必须使用更高级的方法,这里使用Tarjan算法. 本题处理Tarjan算法,似乎输入处理也挺麻烦的. 注意: 由于查询的数据会 ...
- POJ 1470 Closest Common Ancestors (LCA,离线Tarjan算法)
Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 13372 Accept ...
- poj1470 Closest Common Ancestors [ 离线LCA tarjan ]
传送门 Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 14915 Ac ...
- POJ 1470 Closest Common Ancestors 【LCA】
任意门:http://poj.org/problem?id=1470 Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000 ...
- poj----(1470)Closest Common Ancestors(LCA)
Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 15446 Accept ...
随机推荐
- win10 开启全局代理
1. 打开设置 2. 点击“网络和Internet” 3.设置手动代理 . 设置完成后就可以愉快的玩耍啦
- Flask-CBV模式
Flask中的CBV模式 ''' flask中的CBV模式: (1)导入views模块: from flask import views (2)定义类,继承views.MethodView类: cla ...
- [BJOI2019]光线——递推
题目链接: [BJOI2019]光线 设$F_{i}$表示从第$1$面玻璃上面向下射入一单位光线,穿过前$i$面玻璃的透光率. 设$G_{i}$表示从第$i$面玻璃下面向上射入一单位光线,穿过前$i$ ...
- C#winform如何实现文本编辑框(TextBox)的Hint提示文字效果
C#winform如何实现文本编辑框(TextBox)的Hint提示文字效果 private const int EM_SETCUEBANNER = 0x1501; [DllImport(" ...
- Python3 编程之字符串处理
Python3 编程之字符串处理 在编程中最常见的任务就是字符串的处理,So,学好字符串的使用非常重要 一.变量的定义规范 Python中声明变量时,要符合以下规则为准: 只能使用数字.字母.下划线组 ...
- 前端知识点回顾——Reactjs
React.js 编写react需要安装的三个开发环境下的模块 babel 解析JSX react 实现ui用户界面 react-dom 处理dom JSX:在JavaScript里面写html代码( ...
- ELK的安全解决方案 X-Pack(1)
安装 X-Pack 前必须安装 elasticsearch. Kibana.logstash,因为之前安装ELK选择的版本都是5.4.1,所以这次选择X-Pack的版本也要是5.4.1的 第一步:下载 ...
- spring 事务-使用@Transactional 注解(事务隔离级别)
转: spring 事务-使用@Transactional 注解(事务隔离级别) 2016年08月11日 21:49:20 华华鱼 阅读数 15490 标签: spring事务Transactiona ...
- React Native登录注册页面实现空白处收起键盘
其实很简单,直接使用ScrollView作为父视图即可.有木有很神奇啊,以前都还不知道呢.....
- lnmp搭建-手动版
参照链接:http://blog.csdn.net/bravemelon/article/details/64925499 centOS 下安装 Nginx yum -y groupinstall & ...