OkHttp 拦截器流程源码分析

在这篇博客 OkHttp3 拦截器(Interceptor) ,我们已经介绍了拦截器的作用,拦截器是 OkHttp 提供的对 Http 请求和响应进行统一处理的强大机制,它可以实现网络监听、请求以及响应重写、请求失败充实等功能。

同时也了解了拦截器可以被链接起来使用,我们可以注册自定义的拦截器(应用拦截器和网络拦截器)到拦截器链上,如下图:

实际上除了我们自定义的拦截器外,OkHttp 系统内部还提供了几种其他的拦截器,就是上图中 OkHttp core 的部分。OkHttp 内部的拦截器各自负责不同的功能,每一个功能就是一个 Interceptor,这些拦截器连接起来形成了一个拦截器链,最终也就完成了一次网络请求。

具体如下图:

在上一篇博客 OkHttp3 源码分析 中,我们分析了 OkHttp 的同步和异步请求的流程源码,发现无论是同步请求还是异步请求都是通过调用 RealCall 的 getResponseWithInterceptorChain() 方法来获取 response 响应的。

RealCall. getResponseWithInterceptorChain()源码:

Response getResponseWithInterceptorChain() throws IOException {
List<Interceptor> interceptors = new ArrayList();
//添加自定义的应用拦截器
interceptors.addAll(this.client.interceptors());
//负责重定向和失败重试的拦截器
interceptors.add(this.retryAndFollowUpInterceptor);
//桥接网络层和应用层,就是为用户所创建的请求补充添加一些服务端还必需的 http 请求头等
interceptors.add(new BridgeInterceptor(this.client.cookieJar()));
//负责读取缓存,更新缓存
interceptors.add(new CacheInterceptor(this.client.internalCache()));
//负责与服务端建立连接
interceptors.add(new ConnectInterceptor(this.client));
//配置自定义的网络拦截器
if (!this.forWebSocket) {
interceptors.addAll(this.client.networkInterceptors());
}
//向服务端发送请求,从服务端读取响应数据
interceptors.add(new CallServerInterceptor(this.forWebSocket));
//创建 拦截器链chain 对象,这里将各种拦截器的 List 集合传了进去
Chain chain = new RealInterceptorChain(interceptors, (StreamAllocation)null, (HttpCodec)null, (RealConnection)null, 0, this.originalRequest, this, this.eventListener, this.client.connectTimeoutMillis(), this.client.readTimeoutMillis(), this.client.writeTimeoutMillis());
//通过链式请求得到 response
return chain.proceed(this.originalRequest);
}

在这个方法中,我们就发现了 OkHttp 内置的这几种拦截器,这几种拦截器的具体作用稍后再说,先来宏观的分析一下 getResponseWithInterceptorChain() 做了些什么工作:

  1. 创建了一系列的拦截器,并将其放入一个拦截器 List 集合中。
  2. 将拦截器的 List 集合传入 RealInterceptorChain 的构造方法中,创建出一个拦截器链 RealInterceptorChain 。
  3. 执行拦截器链 chain 的 proceed() 方法来依次调用每个不同功能的拦截器,最终获取响应。

那么这个 Chain 对象到底是如何处理拦截器集合的呢,为什么通过调用 chain.proceed 就能得到被拦截器链依次处理之后的 response 呢?

其实这个问题的答案就是责任链设计模式,建议先了解一下关于责任链模式的介绍,再回头往下看。

在理解了责任链模式之后,我们就能比较容易的理解拦截器是如何工作的了。

首先来看一看 Interceptor 接口,很明显的它就是责任链模式中的抽象处理者角色了,各种拦截器都需要实现它的 intercept 方法

/**
* Observes, modifies, and potentially short-circuits requests going out and the corresponding
* responses coming back in. Typically interceptors add, remove, or transform headers on the request
* or response.
*/
public interface Interceptor {
Response intercept(Chain chain) throws IOException; interface Chain {
Request request(); Response proceed(Request request) throws IOException; ...
}
}

这里我们注意到 Interceptor 还包含了一个内部接口 Chain,通过查看 Chain 接口,也可以大概了解它的功能:

  1. 通过 request() 方法来获取 request 请求
  2. 通过 proceed(request) 方法来处理 request 请求,并返回 response 响应

刚刚也介绍了在 getResponseWithInterceptorChain() 方法中,正是由 Chain 来依次调用拦截器来获取 response 的:

    //创建 拦截器链chain 对象,这里将各种拦截器的 List 集合传了进去
Chain chain = new RealInterceptorChain(interceptors, (StreamAllocation)null, (HttpCodec)null, (RealConnection)null, 0, this.originalRequest, this, this.eventListener, this.client.connectTimeoutMillis(), this.client.readTimeoutMillis(), this.client.writeTimeoutMillis());
//通过链式请求得到 response
return chain.proceed(this.originalRequest);

那么它具体是怎么工作的呢?我们先来看一下RealInterceptorChain 的构造方法

public final class RealInterceptorChain implements Interceptor.Chain {
private final List<Interceptor> interceptors;
private final StreamAllocation streamAllocation;
private final HttpCodec httpCodec;
private final RealConnection connection;
private final int index;
private final Request request;
private final Call call;
private final EventListener eventListener;
private final int connectTimeout;
private final int readTimeout;
private final int writeTimeout;
private int calls; public RealInterceptorChain(List<Interceptor> interceptors, StreamAllocation streamAllocation,
HttpCodec httpCodec, RealConnection connection, int index, Request request, Call call,
EventListener eventListener, int connectTimeout, int readTimeout, int writeTimeout) {
this.interceptors = interceptors;
this.connection = connection;
this.streamAllocation = streamAllocation;
this.httpCodec = httpCodec;
this.index = index;
this.request = request;
this.call = call;
this.eventListener = eventListener;
this.connectTimeout = connectTimeout;
this.readTimeout = readTimeout;
this.writeTimeout = writeTimeout;
}

需要特别注意的是这个构造方法里的 index 参数,传入给构造方法的 index 最终被赋值给了一个全局变量 index(这个变量很重要,之后会被使用到)。在构造出了 RealInterceptorChain 对象之后,接着就调用它的 proceed 方法来执行拦截器了。

来看一下 chain.proceed(request) 方法的具体实现:

RealInterceptorChain#proceed:

  public Response proceed(Request request, StreamAllocation streamAllocation, HttpCodec httpCodec,
RealConnection connection) throws IOException {
if (index >= interceptors.size()) throw new AssertionError(); calls++; ... // Call the next interceptor in the chain.
RealInterceptorChain next = new RealInterceptorChain(interceptors, streamAllocation, httpCodec,
connection, index + 1, request, call, eventListener, connectTimeout, readTimeout,
writeTimeout);
//从拦截器集合中获取当前拦截器
Interceptor interceptor = interceptors.get(index);
//调用当前的拦截器的 intercept 方法获取 response
Response response = interceptor.intercept(next); ... return response;
}

这个方法的关键逻辑在这与这三行代码

一, 在 chain.proceed 的方法中,又 new 了一个 RealInterceptorChain,不过这里传入的参数是 index + 1,也就是说,每次调用 proceed 方法,都会产生出一个 index成员变量 +1的 RealInterceptorChain 对象。而且该 chain 对象的名字为 next,所以我们大致也能猜测一下它代表的是下一个 chain 对象。

    RealInterceptorChain next = new RealInterceptorChain(interceptors, streamAllocation, httpCodec,
connection, index + 1, request, call, eventListener, connectTimeout, readTimeout,
writeTimeout);

二, 根据 index 索引值获取当前拦截器,这个 index 就是之前创建 chain 构造函数时的 index 值

大家应该还记得在 getResponseWithInterceptorChain 第一次创建 Chain 对象时,index被初始化为0。

Interceptor interceptor = interceptors.get(index);

三, 调用当前拦截器的 intercept(Chain chain) 方法

Response response = interceptor.intercept(next);

这里我们就以 index 为 0 为例,获取 interceptors 集合中的第一个拦截器 RetryAndFollowUpInterceptor(假设没有添加用户自定义的应用拦截器),来看一下它的 intercept 方法:

  @Override public Response intercept(Chain chain) throws IOException {
Request request = chain.request();
RealInterceptorChain realChain = (RealInterceptorChain) chain;
Call call = realChain.call();
EventListener eventListener = realChain.eventListener(); StreamAllocation streamAllocation = new StreamAllocation(client.connectionPool(),
createAddress(request.url()), call, eventListener, callStackTrace);
this.streamAllocation = streamAllocation; int followUpCount = 0;
Response priorResponse = null;
while (true) {
if (canceled) {
streamAllocation.release();
throw new IOException("Canceled");
} Response response;
boolean releaseConnection = true;
try {
response = realChain.proceed(request, streamAllocation, null, null);
releaseConnection = false;
} catch (RouteException e) {
// The attempt to connect via a route failed. The request will not have been sent.
if (!recover(e.getLastConnectException(), streamAllocation, false, request)) {
throw e.getFirstConnectException();
}
releaseConnection = false;
continue;
} catch (IOException e) {
// An attempt to communicate with a server failed. The request may have been sent.
boolean requestSendStarted = !(e instanceof ConnectionShutdownException);
if (!recover(e, streamAllocation, requestSendStarted, request)) throw e;
releaseConnection = false;
continue;
} finally {
// We're throwing an unchecked exception. Release any resources.
if (releaseConnection) {
streamAllocation.streamFailed(null);
streamAllocation.release();
}
} ...
}
}

intercept 方法的作用

  1. 在发起请求前对 request 进行处理
  2. 调用下一个拦截器,获取 response (通过 chain.proceed 方法)
  3. 对 response 进行处理,返回给上一个拦截器

这几个步骤是不是有点眼熟,在之前介绍 OkHttp3 拦截器(Interceptor) 时,其中给出的自定义 LoggingInterceptor ,也是根据这几个步骤来实现的。

intercept 方法中最关键的地方在于它是如何获取下一个拦截器的:

response = realChain.proceed(request, streamAllocation, null, null);

我们发现,原来在 intercept() 中又会调用 chain.proceed() 方法,而每次调用 proceed 方法中又会去获取一个索引为 index + 1 的下一个拦截器,并执行该拦截器的 intercept() 方法,就是这样相互的递归调用,实现了对拦截器的逐步调用。

这个过程流程图如下:

到这里也许我们会有一个疑问,那就是为什么每次都需要创建一个新的 RealInterceptorChain 对象,只需要修改 index 变量的值不是也能实现同样的效果吗?这里的原因是 RealInterceptorChain 对象中还包含了 request 请求信息在内的其他信息,而每次执行拦截器的 intercept 方法时,因为递归调用的缘故,本层 的 intercept 并没有被执行完,如果复用 RealInterceptorChain 对象,则其他层次会对本层次 RealInterceptorChain 对象产生影响。

参考

https://blog.csdn.net/aiynmimi/article/details/79643123

https://blog.csdn.net/qq_16445551/article/details/79008433

OkHttp3 拦截器源码分析的更多相关文章

  1. struts2拦截器源码分析

    前面博客我们介绍了开发struts2应用程序的基本流程(开发一个struts2的实例),通过前面我们知道了struts2实现请求转发和配置文件加载都是拦截器进行的操作,这也就是为什么我们要在web.x ...

  2. [原创]java WEB学习笔记70:Struts2 学习之路-- struts2拦截器源码分析,运行流程

    本博客的目的:①总结自己的学习过程,相当于学习笔记 ②将自己的经验分享给大家,相互学习,互相交流,不可商用 内容难免出现问题,欢迎指正,交流,探讨,可以留言,也可以通过以下方式联系. 本人互联网技术爱 ...

  3. Jfinal拦截器源码解读

    本文对Jfinal拦截器源码做以下分析说明

  4. linux调度器源码分析 - 运行(四)

    本文为原创,转载请注明:http://www.cnblogs.com/tolimit/ 引言 之前的文章已经将调度器的数据结构.初始化.加入进程都进行了分析,这篇文章将主要说明调度器是如何在程序稳定运 ...

  5. linux调度器源码分析 - 初始化(二)

    本文为原创,转载请注明:http://www.cnblogs.com/tolimit/ 引言 上期文章linux调度器源码分析 - 概述(一)已经把调度器相关的数据结构介绍了一遍,本篇着重通过代码说明 ...

  6. 一步步实现windows版ijkplayer系列文章之三——Ijkplayer播放器源码分析之音视频输出——音频篇

    一步步实现windows版ijkplayer系列文章之一--Windows10平台编译ffmpeg 4.0.2,生成ffplay 一步步实现windows版ijkplayer系列文章之二--Ijkpl ...

  7. 一步步实现windows版ijkplayer系列文章之二——Ijkplayer播放器源码分析之音视频输出——视频篇

    一步步实现windows版ijkplayer系列文章之一--Windows10平台编译ffmpeg 4.0.2,生成ffplay 一步步实现windows版ijkplayer系列文章之二--Ijkpl ...

  8. Linux 内核调度器源码分析 - 初始化

    导语 上篇系列文 混部之殇-论云原生资源隔离技术之CPU隔离(一) 介绍了云原生混部场景中CPU资源隔离核心技术:内核调度器,本系列文章<Linux内核调度器源码分析>将从源码的角度剖析内 ...

  9. 0002 - Spring MVC 拦截器源码简析:拦截器加载与执行

    1.概述 Spring MVC中的拦截器(Interceptor)类似于Servlet中的过滤器(Filter),它主要用于拦截用户请求并作相应的处理.例如通过拦截器可以进行权限验证.记录请求信息的日 ...

随机推荐

  1. centos7配置rsync+inotify数据实时共享

    关于centos7版本上面搭建rsync服务并且实现实时同步之前一直是在6版本上面搭建rsync服务,在7版本上面折腾了半天.此处总结下inotify下载地址:http://github.com/do ...

  2. Laravel 实现多级控制器(实现Api区分版本)

    路由: Route::get('', 'v1\\UserController@index'); 文件夹分层 User控制器命名空间: namespace App\Http\Controllers\v1 ...

  3. 解决 'mvn' 不是内部或外部命令,也不是可运行的程序 或批处理文件。

    'mvn' 不是内部或外部命令,也不是可运行的程序 或批处理文件. 九步完成

  4. 解决办法:Message: 对实体 "useUnicode" 的引用必须以 ';' 分隔符结尾

    Hibernate 5.3.1 INFO: HHH000206: hibernate.properties not foundException in thread "main" ...

  5. Linux根文件系统和目录结构及bash特性4

    文件管理工具:cp,mv,rm    cp命令:copy                cp命令主要用于复制文件或目录 语法:        单源复制        cp [OPTION]... [- ...

  6. Scala(一)——基本类型

    Scala语言快速入门(基本类型) (参考视频:av39126512,韩顺平281集scala精讲) 一.Linux和Windows环境安装 这部分跳过,直接使用IDEA进行搭建,和其他编程语言配置差 ...

  7. 热门前沿知识相关面试问题-MVC/MVP/MVVM架构设计模式面试问题详解

    MVC[最常用]: MVC的定义:M:业务逻辑处理.[业务MODEL]V:处理数据显示的部分.[如xml布局文件]C:Activity处理用户交互的问题.[也就是Activity在MVC中扮演着C的角 ...

  8. PHP中把对象转数组的几个方法

    PHP中把对象转数组的几个方法: 1. //PHP stdClass Object转array function object_array($array) { if(is_object($array) ...

  9. Java io 理解

    任何程序都有io部分,io是对程序来说数据流的输入和输出.这里说的流,是指有字节组成的列,不断输入程序,或者从程序中输出,我们形象称为流.Java的io流有两种,一种叫字节流,最原始的:一种叫字符流. ...

  10. 第六章 组件 55 组件-使用components定义私有组件

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8&quo ...