大意: 给定序列$a$, 元素范围$[1,C]$, 求一个最长子序列, 满足每个元素要么不出现, 要么出现次数$\le K$.

枚举右端点, 考虑左端点合法的位置. 显然一定是$C$种颜色合法位置的交, 可以用线段树维护合法颜色的种类数, 每次二分出最小的满足合法个数为$C$的位置更新答案.

考虑右端点移动到$i$, 位置$i$的颜色为$x$, 存在一个位置$p_{x}$, 满足

对于颜色$x$的合法区间为$[1,p_{x}]$, 不合法区间为$[p_{x}+1,i]$.

在右端点的移动过程中, 维护上次计算的增量即可.

也就是说每次对$[p'_{x}+1,p_{x}]$区间加, $[{pre}_x+1,i]$区间减.

$p'_{x}$为上次计算时的分界点, ${pre}_x$为$x$上次出现位置

类似题目可以做一下[POI2015]KIN, 也是对每种颜色维护一个增量.

#include <iostream>
#include <cstdio>
#include <queue>
#define REP(i,a,n) for(int i=a;i<=n;++i)
#define pb push_back
#define lc (o<<1)
#define rc (lc|1)
#define mid ((l+r)>>1)
#define ls lc,l,mid
#define rs rc,mid+1,r
#define hr puts("")
using namespace std;
const int N = 1e6+10;
int n, c, k, a[N];
vector<int> v[N];
struct _ {
int ma,tag,pos;
void upd(int x) {ma+=x,tag+=x;}
_ operator + (const _ &rhs) const {
_ ret;
ret.ma = max(ma, rhs.ma);
ret.pos = ret.ma==ma?pos:rhs.pos;
ret.tag = 0;
return ret;
}
} tr[N<<2];
void build(int o, int l, int r) {
tr[o].ma=c,tr[o].tag=0,tr[o].pos=l;
if (l!=r) build(ls),build(rs);
}
void pd(int o) {
if (tr[o].tag) {
tr[lc].upd(tr[o].tag);
tr[rc].upd(tr[o].tag);
tr[o].tag=0;
}
}
void add(int o, int l, int r, int ql, int qr, int v) {
if (l>qr||r<ql) return;
if (ql<=l&&r<=qr) return tr[o].upd(v);
pd(o),add(ls,ql,qr,v),add(rs,ql,qr,v),tr[o]=tr[lc]+tr[rc];
}
int qry(int o, int l, int r, int ql, int qr) {
if (l>qr||r<ql||tr[o].ma!=c) return 0;
if (ql<=l&&r<=qr) return tr[o].pos;
pd(o);
int t = qry(ls,ql,qr);
return t?t:qry(rs,ql,qr);
}
int main() {
while (~scanf("%d%d%d",&n,&c,&k)) {
REP(i,1,n) scanf("%d",a+i);
REP(i,1,c) v[i].clear(),v[i].pb(0);
int ans = 0;
build(1,1,n);
REP(i,1,n) {
if (v[a[i]].back()+1<=i) add(1,1,n,v[a[i]].back()+1,i,-1);
v[a[i]].pb(i);
int p = v[a[i]].size()-k-1;
if (p>=0) add(1,1,n,v[a[i]][p]+1,v[a[i]][p+1],1);
int j = qry(1,1,n,1,i);
if (j) ans = max(ans, i-j+1);
}
printf("%d\n",ans);
}
}

2019杭电多校二 L. Longest Subarray (线段树)的更多相关文章

  1. 2019杭电多校二 F. Fantastic Magic Cube (FWT)

    大意: 给定$N^3$立方体, 每个单位立方体权值为三个坐标异或, 每次沿坐标轴切一刀, 得分为两半内权值和的乘积, 求切成$n^3$块的最大得分. 可以发现得分与切法无关, 假设每个点权值为$a_i ...

  2. 2019杭电多校一 L. Sequence (NTT)

    大意: 给定序列$a$, 给定$m$个操作, 求最后序列每一项的值. 一共$3$种操作, 其中第$k$种操作将序列变为$b_i=\sum\limits_{j=i-kx}a_j$, $(0\le x,1 ...

  3. 2019杭电多校第二场hdu6602 Longest Subarray(线段树)

    Longest Subarray 题目传送门 解题思路 本题求一个最大的子区间,满足区间内的数字要么出现次数大于等于k次,要么没出现过.给定区间内的数字范围是1~c. 如果r为右边界,对于一种数字x, ...

  4. 2019杭电多校6 hdu6638 Snowy Smile(二维最大矩阵和 线段树)

    http://acm.hdu.edu.cn/showproblem.php?pid=6638 题意:给你一些点的权值,让找一个矩形圈住一部分点,问圈住点的最大权值和 分析:由于是稀疏图,明显要先把x, ...

  5. [2019杭电多校第二场][hdu6602]Longest Subarray(线段树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6602 题目大意为求最长的区间,满足C种数字在区间内要么不出现,要么出现的次数都不小于K. 大致的分析一 ...

  6. [2019杭电多校第六场][hdu6638]Snowy Smile(维护区间最大子段和)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6638 题意为在一个平面上任意选择一个长方形,使得长方形内点权和最大. 因为长方形可以任意选择,所以上下 ...

  7. [2019杭电多校第三场][hdu6609]Find the answer(线段树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6609 大致题意是求出每个位置i最小需要将几个位置j变为0(j<i),使得$\sum_{j=1}^ ...

  8. 2019杭电多校第六场hdu6638 Snowy Smile(线段树+枚举)

    Snowy Smile 题目传送门 解题思路 先把y离散化,然后把点按照x的大小进行排序,我们枚举每一种x作为上边界,然后再枚举其对应的每一种下边界.按照这种顺序插入点,这是一个压维的操作,即在线段树 ...

  9. 2019杭电多校第三场hdu6609 Find the answer(线段树)

    Find the answer 题目传送门 解题思路 要想变0的个数最少,显然是优先把大的变成0.所以离散化,建立一颗权值线段树,维护区间和与区间元素数量,假设至少减去k才能满足条件,查询大于等于k的 ...

随机推荐

  1. Apache Flink - 作业和调度

    Scheduling: Flink中的执行资源通过任务槽(Task Slots)定义.每个TaskManager都有一个或多个任务槽,每个槽都可以运行一个并行任务管道(pipeline).管道由多个连 ...

  2. 数据库——JavaWEB数据库连接

    一.数据库连接的发展 1.数据库连接 用户每次请求都需要向数据库获得链接,而数据库创建连接通常需要消耗相对较大的资源,创建时间也较长.假设网站一天10万访问量,数据库服务器就需要创建10万次连接,极大 ...

  3. phpstorm有红波浪线,怎么找到语法错误的地方

    在phpstorm里面,有时候不小心多打了个字符,会导致IDE显示红色波浪线,提示有语法错误了,但是不容易找出在哪一行. 在有红色波浪线的文件上,右键[inspect code]: 检查代码后就会知道 ...

  4. Oracle 存储过程—为数传递变量

    oracle 存储过程的基本语法create or replace procedure proc1( p_para1 varchar2, p_para2 out varchar2, p_para3 i ...

  5. shell 脚本 - 关于循环的应用

    array=('Brand' 'BrandInfo' 'BrandBaojia' 'VehicleType' 'BrandBaoyang' 'Youhui' 'Config' \ 'Comment' ...

  6. telnet nmap netstap

    yum install nmap [root@10-13-109-236 ~]# nmap localhost Starting Nmap 6.40 ( http://nmap.org ) at 20 ...

  7. dom 加载监听事件 及解析

    document.addEventListener("DOMContentLoaded", function (_event) { console.log("初始DOM ...

  8. Matrix: android 中的Matrix (android.graphics.Matrix) (转)

    本篇博客主要讲解一下如何处理对一个Bitmap对象进行处理,包括:缩放.旋转.位移.倾斜等.在最后将以一个简单的Demo来演示图片特效的变换. 1. Matrix概述 对于一个图片变换的处理,需要Ma ...

  9. Android:Recents和AMS中历史任务的区别

    1.1 任务和返回栈 - 实际数据模型  这个是指在调度体系里实际保存的TaskRecord实例,而ActivityRecord-TaskRecord-ActivityStack之间的关系建议看官方文 ...

  10. 123457123456#0#-----com.yuming.baoBaoAiXueXi01hanzi--前拼后广--幼儿园宝宝学汉字

    123457123457#0#-----com.yuming.baoBaoAiXueXi01hanzi--前拼后广--幼儿园宝宝学汉字