题目传送门

话说这道题不分析样例实在是太亏了...结论题啊...

但是话说回来不知道它是结论题的时候会不会想到猜结论呢...毕竟样例一、二都有些特殊。

观察样例发现选中的子图都只有一条边。

于是猜只有一条边的时候解最优。

飞快地写个暴力,然后和结论对拍,然后假装这个结论是对的,然后就$AC$了(大雾

还是证明一下这个结论吧:

用反证法。

设这样三个点的点权分别为$A$,$B$,$C$,两条边的边权为$n$,$m$

假设子图中有$A,B,C$三个点比只有两个点更优。

也就是三个点都选的答案比只选$AB$和只选$BC$都大。

三个都选的答案:$(A+B+C)/(n+m)$

只选$AB$:$(A+B)/m$

只选$BC$:$(B+C)/n$

则:

$$(A+B+C)/(n+m)>(A+B)/m$$

$$(A+B+C)/(n+m)>(B+C)/n$$

化简:(权都是正数)

$$(A+B+C)*m>(A+B)*(n+m)$$

$$(A+B+C)*n>(B+C)*(n+m)$$

$$↓$$

$$C*m>A*n+B*n$$

$$A*n>B*m+C*m$$

相加:
$$C*m+A*n>A*n+B*n+B*m+C*m$$

$0>B*n+B*m$

由于$B$和$n$,$m$都是正数,导出矛盾。

所以假设不成立。

另外,如果$AC$之间有连边的话,那三个都选肯定更不优,分子不变,分母变大了嘛。只选$AC$都不用讨论,至少在这种情况下三个都选干不过只选$AB$或$BC$。

暴力程序(拿来对拍)

有同学写的$2^n$枚举子集的暴力,我觉得略麻烦,还是更喜欢自己的(笑)

甚至还想优化一下自己的暴力,就是在以$1$以外的点为起点的时候,就不把$1$加进去,因为$1$有的状态已经在$1$为起点的算过了。

但是反正是拿来写对拍嘛,节约考试时间。

 #include<cstdio>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
#define N 505
#define ll long long
int n,m;
int a[N];
bool vis[N];
double ans=0.0;
vector<pair<int,int> >G[N];
int rd()
{
int f=,x=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=(x<<)+(x<<)+(c^);c=getchar();}
return f*x;
}
void dfs(int u,int d,int b)
{
for(int i=;i<G[u].size();i++)
{
int v=G[u][i].first;
if(vis[v]) continue;
vis[v]=;
int tmp=;
for(int j=;j<G[v].size();j++)
if(vis[G[v][j].first]) tmp+=G[v][j].second;
dfs(v,d+a[v],b+tmp);
vis[v]=;
}
if(b==) return ;
ans=max(ans,1.0*d/b);
}
int main()
{
n=rd(),m=rd();
for(int i=;i<=n;i++)
a[i]=rd();
for(int i=;i<=m;i++)
{
int u=rd(),v=rd(),w=rd();
G[u].push_back(make_pair(v,w));
G[v].push_back(make_pair(u,w));
}
for(int i=;i<=n;i++)
{
vis[i]=;
dfs(i,a[i],);
vis[i]=;
}
printf("%.9f\n",ans);
return ;
}
//不分析样例真的是个不好的习惯啊

Code

正解程序:(比暴力好写)

 #include<cstdio>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
#define N 505
#define ll long long
int n,m;
int a[N];
double ans=0.0;
int rd()
{
int f=,x=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=(x<<)+(x<<)+(c^);c=getchar();}
return f*x;
}
int main()
{
n=rd(),m=rd();
for(int i=;i<=n;i++)
a[i]=rd();
for(int i=;i<=m;i++)
{
int u=rd(),v=rd(),w=rd();
ans=max(ans,1.0*(a[u]+a[v])/w);
}
printf("%.9f\n",ans);
return ;
}

Code

CF444A DZY Loves Physics【结论】的更多相关文章

  1. cf444A DZY Loves Physics

    A. DZY Loves Physics time limit per test 1 second memory limit per test 256 megabytes input standard ...

  2. Codeforces 444A DZY Loves Physics(图论)

    题目链接:Codeforces 444A DZY Loves Physics 题目大意:给出一张图,图中的每一个节点,每条边都有一个权值.如今有从中挑出一张子图,要求子图联通,而且被选中的随意两点.假 ...

  3. CF 444C DZY Loves Physics(图论结论题)

    题目链接: 传送门 DZY Loves Chemistry time limit per test1 second     memory limit per test256 megabytes Des ...

  4. Codeforces Round #254 (Div. 1) A. DZY Loves Physics 智力题

    A. DZY Loves Physics 题目连接: http://codeforces.com/contest/444/problem/A Description DZY loves Physics ...

  5. CodeForces 444C. DZY Loves Physics(枚举+水题)

    转载请注明出处:http://blog.csdn.net/u012860063/article/details/37509207 题目链接:http://codeforces.com/contest/ ...

  6. BZOJ3570 : DZY Loves Physics I

    考虑两个质量均为m,速度分别v1.v2的小球发生完全弹性碰撞的影响: 由动能守恒得: $\frac{1}{2}mv_1^2+\frac{1}{2}mv_2^2=\frac{1}{2}mv_1'^2+\ ...

  7. 【权值分块】bzoj3570 DZY Loves Physics I

    以下部分来自:http://www.cnblogs.com/zhuohan123/p/3726306.html 此证明有误. DZY系列. 这题首先是几个性质: 1.所有球质量相同,碰撞直接交换速度, ...

  8. 【Codeforces 444A】DZY Loves Physics

    [链接] 我是链接,点我呀:) [题意] 题意 [题解] 两个点的子图他们的"密度"是比所有联通生成子图都要大的 "只要胆子大,遇到什么问题都不怕!" [代码] ...

  9. @codeforces - 444A@ DZY Loves Physics

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个 n 点 m 边的图,边有边权,点有点权. 找到一个连通 ...

随机推荐

  1. SpringBoot + Maven + Hibernate ( 简单实现CRUD功能 )

    工具:idea.mariadb数据库 创建一个项目 ( student ) ........(使用idea创建一个springboot项目,这里我就不多说了) Maven 中的依赖 <?xml ...

  2. 01_初识redis

    1.redis和mysql mysql是一个软件,帮助开发者对一台机器的硬盘进行操作. redis是一个软件,帮助开发者对一台机器的内存进行操作 汽车之家,如果硬盘挂掉了,页面还能访问1个月 关键字: ...

  3. HDU 6070 - Dirt Ratio | 2017 Multi-University Training Contest 4

    比赛时会错题意+不知道怎么线段树维护分数- - 思路来自题解 /* HDU 6070 - Dirt Ratio [ 二分,线段树 ] | 2017 Multi-University Training ...

  4. Vue : Select

    <template> <div> <select v-model="mychoice"> <option value="html ...

  5. ubuntu系统火狐无法播放网页视频

    在ubuntu开发环境下,浏览firefox上网页视频时,无法播放视频. 需要安装flash插件 命令如下: 1.   sudo apt-get update 2.   sudo apt-get in ...

  6. Luogu P5048 [Ynoi2019模拟赛]Yuno loves sqrt technology III 分块

    这才是真正的$N\sqrt{N}$吧$qwq$ 记录每个数$vl$出现的位置$s[vl]$,和每个数$a[i]=vl$是第几个$vl$,记为$P[i]$,然后预处理出块$[i,j]$区间的答案$f[i ...

  7. (三)根据向导创建MFC工程,事件的添加和删除

    一,文档视图结构 文档:它是一个类,这个类专门用来存储数据 视图:它是一个类,这个类专门用来显示和修改数据 框架类:一个容器,这个容器装了视图 健完工程之后,类视图: 运行一下: 几个比较重要的函数 ...

  8. topcoder13444

    CountTables TopCoder - 13444 sol:题意和题解都丢在上面了,自己XJByy了一下 先保证行不同,然后对列容斥,dp[i]表示i列的答案 行不同时i列的答案显然是C(c^i ...

  9. codeforces163D

    Large Refrigerator CodeForces - 163D 给定一个长方体的体积V,求出这个长方体的最小表面积. 输入 第一行有一个整数t (1 ≤ t ≤ 500) — 测试数据的组数 ...

  10. Django基础之response对象

    与由DJango自动创建的HttpRequest对象相比, HttpResponse对象是我们的职责范围了. 我们写的每个视图都需要实例化, 填充和返回一个HttpResponse. HttpResp ...