CF940F Machine Learning 带修改莫队
题意:支持两种操作:$1.$ 查询 $[l,r]$ 每个数字出现次数的 $mex$,$2.$ 单点修改某一位置的值.
这里复习一下带修改莫队.
普通的莫队中,以左端点所在块编号为第一关键字,右端点大小为第二关键字,在带修改莫队中每一个操作都有一个时间戳,那时间戳就是第三关键字.
可以将数字先离散化,开一个桶来维护每一种数字出现的次数.
然后在移动区间时就将对应数字删除/插入.
再维护一个当前时刻,表示当前数组的状态是第 $now$ 个修改进行后的状态.
将 $now$ 一直移动到和当前询问的时间戳吻合即可.
注意:在移动时间戳的时候要换一下修改的值. 假如说原来的修改是变成 $y$,而序列中的元素为 $x$,就要将修改的元素变成 $y$.
这样在下一次经过这个时间戳的时候就会将之前改动过的值再改回来.
排序函数一定要注意:
struct query
{
int l,r,id,t;
query(int l=0,int r=0):l(l),r(r){}
bool operator<(query b) const
{
return l/B==b.l/B?(r/B==b.r/B?t<b.t:r<b.r):l<b.l;
}
}q[N];
这里千万不能写错,否则整个时间复杂度就假了~
一般来说,带修改莫队中块的大小取在 $n^{0.6666}$ 来说是比较优的.
这道题中,你发现 $mex$ 的大小不超过 $\sqrt n$,所以我们可以直接暴力求.
code:
#include <bits/stdc++.h>
#define N 300005
#define ll long long
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
int n,m,tot,opcnt,qcnt,B,now;
int a[N],A[N],output[N],cnt[N],mex[N];
struct query
{
int l,r,id,t;
query(int l=0,int r=0):l(l),r(r){}
bool operator<(query b) const
{
return l/B==b.l/B?(r/B==b.r/B?t<b.t:r<b.r):l<b.l;
}
}q[N];
struct change
{
int p,x;
change(int p=0,int x=0):p(p),x(x){}
}c[N];
void add(int num)
{
--mex[cnt[num]];
++mex[++cnt[num]];
}
void del(int num)
{
--mex[cnt[num]];
++mex[--cnt[num]];
}
void update(int id,int t)
{
if(c[t].p>=q[id].l&&c[t].p<=q[id].r)
{
del(a[c[t].p]);
add(c[t].x);
}
swap(c[t].x, a[c[t].p]);
}
int getans()
{
int i,j;
for(i=1;mex[i]>0;++i);
return i;
}
int main()
{
int i,j,l=2,r=1;
// setIO("input");
scanf("%d%d",&n,&m);
B=pow(n,0.6666);
for(i=1;i<=n;++i)
{
scanf("%d",&a[i]);
A[++tot]=a[i];
}
for(i=1;i<=m;++i)
{
int op,a,b;
scanf("%d%d%d",&op,&a,&b);
if(op==1)
{
++qcnt;
q[qcnt]=query(a,b);
q[qcnt].id=qcnt;
q[qcnt].t=opcnt;
}
else
{
++opcnt;
c[opcnt]=change(a,b);
A[++tot]=b;
}
}
sort(A+1,A+1+tot);
for(i=1;i<=n;++i) a[i]=lower_bound(A+1,A+1+tot,a[i])-A;
for(i=1;i<=opcnt;++i) c[i].x=lower_bound(A+1,A+1+tot,c[i].x)-A;
sort(q+1,q+1+qcnt);
for(i=1;i<=qcnt;++i)
{
for(;l>q[i].l;) add(a[--l]);
for(;r<q[i].r;) add(a[++r]);
for(;l<q[i].l;) del(a[l++]);
for(;r>q[i].r;) del(a[r--]);
for(;now<q[i].t;) update(i, ++now);
for(;now>q[i].t;) update(i, now--);
output[q[i].id]=getans();
}
for(i=1;i<=qcnt;++i) printf("%d\n",output[i]);
return 0;
}
CF940F Machine Learning 带修改莫队的更多相关文章
- Codeforces 940F Machine Learning 带修改莫队
题目链接 题意 给定一个长度为\(n\)的数组\(a\),\(q\)个操作,操作分两种: 对于区间\([l,r]\),询问\(Mex\{c_0,c_1,c_2,⋯,c_{10^9}\}\),其中\(c ...
- BZOJ2120 数颜色(带修改莫队)
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...
- bzoj 2120 数颜色 带修改莫队
带修改莫队,每次查询前调整修改 #include<cstdio> #include<iostream> #include<cstring> #include< ...
- BZOJ2120&2453数颜色——线段树套平衡树(treap)+set/带修改莫队
题目描述 墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会像你发布如下指令: 1. Q L R代表询问你从第L支画笔到第R支画笔中共有几种不同颜色的画笔. 2 ...
- BZOJ.2453.维护队列([模板]带修改莫队)
题目链接 带修改莫队: 普通莫队的扩展,依旧从[l,r,t]怎么转移到[l+1,r,t],[l,r+1,t],[l,r,t+1]去考虑 对于当前所在的区间维护一个vis[l~r]=1,在修改值时根据是 ...
- [BZOJ4129]Haruna’s Breakfast(树上带修改莫队)
BZOJ3585,BZOJ2120,BZOJ3757三合一. 对于树上路径问题,树链剖分难以处理的时候,就用树上带修改莫队. 这里的MEX问题,使用BZOJ3585的分块方法,平衡了时间复杂度. 剩下 ...
- BZOJ.3052.[WC2013]糖果公园(树上莫队 带修改莫队)
题目链接 BZOJ 当然哪都能交(都比在BZOJ交好),比如UOJ #58 //67376kb 27280ms //树上莫队+带修改莫队 模板题 #include <cmath> #inc ...
- BZOJ2120数颜色(带修改莫队)
莫队算法是一种数据结构的根号复杂度替代品,主要应用在询问[l,r]到询问[l+1,r]和[l,r+1]这两个插入和删除操作复杂度都较低的情况下.具体思想是:如果把一个询问[l,r]看做平面上的点(l, ...
- 【BZOJ】4129: Haruna’s Breakfast 树分块+带修改莫队算法
[题意]给定n个节点的树,每个节点有一个数字ai,m次操作:修改一个节点的数字,或询问一条树链的数字集合的mex值.n,m<=5*10^4,0<=ai<=10^9. [算法]树分块+ ...
随机推荐
- Board Game CodeForces - 605D (BFS)
大意: 给定$n$张卡$(a_i,b_i,c_i,d_i)$, 初始坐标$(0,0)$. 假设当前在$(x,y)$, 若$x\ge a_i,y\ge b_i$, 则可以使用第$i$张卡, 使用后达到坐 ...
- 【转载】在使用JDBC连接MySql时报错:You must configure either the server or JDBC driver (via the serverTimezone configuration property) to use a more specifc time zone value if you want to utilize time zone support
在使用JDBC连接MySql时报错:You must configure either the server or JDBC driver (via the serverTimezone config ...
- 验证码识别的免费 OCR
在做接口自动化以及爬虫的过程中,验证码一般是个很烦的存在,其实大厂们已经做好了一些 OCR 供使用,这里介绍一下百度 OCR 的使用方法. 注册并生成应用 1.注册一个百度智能云账号:http://a ...
- Python实现FTP文件定时自动下载
之前遇到技术问题总能在技术博客上得到启发,十分感谢各位的无私分享.而自己却很少发文,固然是水平有限,但也限制了知识积累和总结.今后多总结分享,回馈博客的同时也希望大家多多批评. 一.需求: 某数据公司 ...
- drunk_admin_hacking_challenge靶机之旅?
注: 只是记录本人玩的时候发现的新奇点 如果你也想玩且看了这篇文章还是不会,请联系gg 靶机下载地址 https://www.vulnhub.com/entry/drunk-admin-web-h ...
- 浅析Java中的集合
先了解一下集合与数组的区别:数组是java中存储基本数据类型.引用类型的一种容器,但是数组的长度固定,不适合在对象数量未知的情况下使用. 集合只能存储引用类型的数据,长度可变,可在多数情况下使用. 集 ...
- Oracle 找到引起账户锁定的IP
在ORACLE数据库中,如果没有修改过FAILED_LOGIN_ATTEMPTS的话,默认10次尝试失败后就会锁住用户.此时再登录数据库,就会遇到ORA-28000: the account is l ...
- MySQL表的修改
修改表的名字 ALTER TABLE 旧表名 RENAME 新表名; 字段的修改: 添加字段 ALTER TBALE 表名 ADD COLUMN 新字段 INT; 删除字段 ALTER TBALE 表 ...
- Django drf:版本控制、django的缓存
一.版本控制 二.django的缓存 一.版本控制 1.内置版本控制类 from rest_framework.versioning import QueryParameterVersioning,A ...
- haproxy??
HAProxy是一个使用C语言编写的自由及开放源代码软件,其提供高可用性.负载均衡,以及基于TCP和HTTP的应用程序代理. HAProxy特别适用于那些负载特大的web站点,这些站点通常又需要会话保 ...