typing-python用于类型注解的库
简介
动态语言的灵活性使其在做一些工具,脚本时非常方便,但是同时也给大型项目的开发带来了一些麻烦。
自python3.5开始,PEP484为python引入了类型注解(type hints),虽然在pep3107定义了函数注释(function annotation)的语法,但仍然故意留下了一些未定义的行为.现在已经拥有许多对于静态类型的分析的第三方工具,而pep484引入了一个模块来提供这些工具,同时还规定一些不能使用注释(annoation)的情况
#一个典型的函数注释例子,为参数加上了类型
def greeting(name: str) -> str:
return 'Hello ' + name
伴随着python3.6的pep526则更进一步引入了对变量类型的声明,和在以前我们只能在注释中对变量的类型进行说明
# 使用注释来标明变量类型
primes = [] # type:list[int]
captain = ... #type:str
class Starship:
stats = {} #type:Dict[str,int]
primes:List[int] = []
captain:str #Note: no initial value
class Starship:
stats: ClassVar[Dict[str,int]] = {}
typing--对于type hints支持的标准库
typing模块已经被加入标准库的provisional basis中,新的特性可能会增加,如果开发者认为有必要,api也可能会发生改变,即不保证向后兼容性
我们已经在简介中介绍过类型注解,那么除了默认类型的int、str用于类型注解的类型有哪些呢?
typing库便是一个帮助我们实现类型注解的库
类型别名(type alias)
在下面这个例子中,Vector和List[float]可以视为同义词
from typing import List
Vector = List[float]
def scale(scalar: float, vector: Vector)->Vector:
return [scalar*num for num in vector]
new_vector = scale(2.0, [1.0, -4.2, 5.4])
类型别名有助于简化一些复杂的类型声明
from typing import Dict, Tuple, List
ConnectionOptions = Dict[str, str]
Address = Tuple[str, int]
Server = Tuple[Address, ConnectionOptions]
def broadcast_message(message: str, servers: List[Server]) -> None:
...
# The static type checker will treat the previous type signature as
# being exactly equivalent to this one.
def broadcast_message(
message: str,
servers: List[Tuple[Tuple[str, int], Dict[str, str]]]) -> None:
pass
新类型(New Type)
使用NewType来辅助函数创造不同的类型
form typing import NewType
UserId = NewType("UserId", int)
some_id = UserId(524313)
静态类型检查器将将新类型视为原始类型的子类。这对于帮助捕获逻辑错误非常有用
def get_user_name(user_id: UserId) -> str:
pass
# typechecks
user_a = get_user_name(UserId(42351))
# does not typecheck; an int is not a UserId
user_b = get_user_name(-1)
你仍然可以使用int类型变量的所有操作来使用UserId类型的变量,但结果返回的都是都是int类型。例如
# output仍然是int类型而不是UserId类型
output = UserId(23413) + UserId(54341)
虽然这无法阻止你使用int类型代替UserId类型,但可以避免你滥用UserId类型
注意,这些检查仅仅被静态检查器强制检查,在运行时Derived = NewType('Derived',base)将派生出一个函数直接返回你传的任何参数,这意味着Derived(some_value)并不会创建任何新类或者创建任何消耗大于普通函数调用消耗的函数
确切地说,这个表达式 some_value is Derived(some_value)
在运行时总是对的。
这也意味着不可能创建派生的子类型,因为它在运行时是一个标识函数,而不是一个实际类型:
from typing import NewType
UserId = NewType('UserId', int)
# Fails at runtime and does not typecheck
class AdminUserId(UserId): pass
然而,它可以创建一个新的类型基于衍生的NewType
from typing import NewType
UserId = NewType('UserId', int)
ProUserId = NewType('ProUserId', UserId)
然后对于ProUserId的类型检查会如预料般工作
Note:回想一下,使用类型别名声明的两个类型是完全一样的,令
Doing = Original
将会使静态类型检查时把Alias等同于Original,这个结论能够帮助你简化复杂的类型声明与Alias不同,NewType声明了另一个的子类,令
Derived = NewType('Derived', Original)
将会使静态类型检查把Derived
看做Original
的子类,这意味着类型Original
不能用于类型Derived
,这有助于使用最小的消耗来防止逻辑错误。
回调(callable)
回调函数可以使用类似Callable[[Arg1Type, Arg2Type],ReturnType]
的类型注释
例如
from typing import Callable
def feeder(get_next_item: Callable[[], str]) -> None:
# Body
def async_query(on_success: Callable[[int], None],
on_error: Callable[[int, Exception], None]) -> None:
# Body
可以通过对类型提示中的参数列表替换一个文本省略号来声明一个可调用的返回类型,而不指定调用参数,例如 Callable[..., ReturnType]
泛型(Generics)
因为容器中的元素的类型信息由于泛型不同通过一般方式静态推断,因此抽象类被用来拓展表示容器中的元素
from typing import Mapping, Sequence
def notify_by_email(employees: Sequence[Employee],
overrides: Mapping[str, str]) -> None: ...
可以通过typing中的TypeVar
将泛型参数化
from typing import Sequence, TypeVar
T = TypeVar('T') # 申明类型变量
def first(l: Sequence[T]) -> T: # Generic function
return l[0]
用户定义泛型类型
from typing import TypeVar, Generic
from logging import Logger
T = TypeVar('T')
class LoggedVar(Generic[T]):
def __init__(self, value: T, name: str, logger: Logger) -> None:
self.name = name
self.logger = logger
self.value = value
def set(self, new: T) -> None:
self.log('Set ' + repr(self.value))
self.value = new
def get(self) -> T:
self.log('Get ' + repr(self.value))
return self.value
def log(self, message: str) -> None:
self.logger.info('%s: %s', self.name, message)
定义了Generic[T]作为LoggedVar的基类,同时T也作为了方法中的参数。
通过Generic基类使用元类(metaclass)定义__getitem__()
使得LoggedVar[t]
是有效类型
from typing import Iterable
def zero_all_vars(vars: Iterable[LoggedVar[int]]) -> None:
for var in vars:
var.set(0)
泛型可以是任意类型的变量,但也可以被约束
from typing import TypeVar, Generic
...
T = TypeVar('T')
S = TypeVar('S', int, str)
class StrangePair(Generic[T, S]):
...
每个类型变量的参数必须是不同的
下面是非法的
from typing import TypeVar, Generic
...
T = TypeVar('T')
class Pair(Generic[T, T]): # INVALID
...
你可以使用Generic实现多继承
from typing import TypeVar, Generic, Sized
T = TypeVar('T')
class LinkedList(Sized, Generic[T]):
...
当继承泛型类时,一些类型变量可以被固定
from typing import TypeVar, Mapping
T = TypeVar('T')
class MyDict(Mapping[str, T]):
...
使用泛型类而不指定类型参数则假定每个位置都是Any
,。在下面的例子中,myiterable不是泛型但隐式继承Iterable [Any]
from typing import Iterable
class MyIterable(Iterable): # Same as Iterable[Any]
还支持用户定义的泛型类型别名。实例:
from typing import TypeVar, Iterable, Tuple, Union
S = TypeVar('S')
Response = Union[Iterable[S], int]
# Return type here is same as Union[Iterable[str], int]
def response(query: str) -> Response[str]:
...
T = TypeVar('T', int, float, complex)
Vec = Iterable[Tuple[T, T]]
def inproduct(v: Vec[T]) -> T: # Same as Iterable[Tuple[T, T]]
return sum(x*y for x, y in v)
Generic的元类是abc.ABCMeta的子类,泛型类可以是包含抽象方法或属性的ABC类(A generic class can be an ABC by including abstract methods or properties)
同时泛型类也可以含有ABC类的方法而没有元类冲突。
Any
一种特殊的类型是。静态类型检查器将将每个类型视为与任何类型和任何类型兼容,与每个类型兼容。
from typing import Any
a = None # type: Any
a = [] # OK
a = 2 # OK
s = '' # type: str
s = a # OK
def foo(item: Any) -> int:
# Typechecks; 'item' could be any type,
# and that type might have a 'bar' method
item.bar()
...
typing-python用于类型注解的库的更多相关文章
- python数字类型之math库使用
首先我们应当了解什么是math库: math库是python提供的内置数学类函数库,math库不支持复数类型,仅支持整数和浮点数运算.math库一共提供了4个数字常数和44个函数.44个函数共分为4类 ...
- typing类型注解库
简介 动态语言的灵活性使其在做一些工具,脚本时非常方便,但是同时也给大型项目的开发带来了一些麻烦. 自python3.5开始,PEP484为python引入了类型注解(type hints),虽然在p ...
- Python Type Hint类型注解
原文地址:https://realpython.com/python-type-checking/ 在本指南中,你将了解Python类型检查.传统上,Python解释器以灵活但隐式的方式处理类型.Py ...
- Python 3 新特性:类型注解——类似注释吧,反正解释器又不做校验
Python 3 新特性:类型注解 Crossin 上海交通大学 计算机应用技术硕士 95 人赞同了该文章 前几天有同学问到,这个写法是什么意思: def add(x:int, y:int) - ...
- Python中第三方的用于解析HTML的库:BeautifulSoup
背景 在Python去写爬虫,网页解析等过程中,比如: 如何用Python,C#等语言去实现抓取静态网页+抓取动态网页+模拟登陆网站 常常需要涉及到HTML等网页的解析. 当然,对于简单的HTML中内 ...
- Python3.6引入的f-string 与 Python 3的新的特性:类型注解;
f-string 1.介绍 f-string(formatted string literals):格式化字符串常量,是Python3.6新引入的一种字符串格式化方法,使格式化字符串的操作更加简便. ...
- Python入门篇-类型注解
Python入门篇-类型注解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.函数定义的弊端 1>.动态语言很灵活,但是这种特性也是弊端 Python是动态语言,变量随时可 ...
- python 类型注解
函数定义的弊端 python 是动态语言,变量随时可以被赋值,且能赋值为不同类型 python 不是静态编译型语言,变量类型是在运行器决定的 动态语言很灵活,但是这种特性也是弊端 def add(x, ...
- 量化投资策略:常见的几种Python回测框架(库)
量化投资策略:常见的几种Python回测框架(库) 原文地址:http://blog.csdn.net/lawme/article/details/51454237 本文章为转载文章.这段时间在研究量 ...
随机推荐
- Java 基础 - Set接口 及其实现类HashSet/LinkedHashSet/TreeSet
笔记: /**Set接口 及其实现类 * 公用操作同Collection: * * ①size(),clear()②isEmpty(),③contains(),④add()方法 和remove()方法 ...
- python第三方库的更新和安装指定版本
安装指定版本: pip install openpyxl==2.3.4 更新到最新版本: pip install --upgrade openpyxl
- P4047 [JSOI2010]部落划分 并查集
思路:并查集+生成树 提交:2次(虽然样例都没过但感觉是对的$QwQ$(判边少了一条)) 题解: 把所有点之间连边,然后$sort$一遍,从小往大加边,直到连第$n-k+1$条边(相当于是破话$k$个 ...
- Oracle 物理结构(五) 文件-在线日志文件
一.什么是在线日志文件 默认情况下redo的块大小是磁盘的扇区大小,通常是512字节,但是现在很多磁盘开始支持4k的扇区,oracle能自动识别并使用4k的大小,但是使用4k的redo block会有 ...
- 【概率论】3-9:多随机变量函数(Functions of Two or More Random Variables)
title: [概率论]3-9:多随机变量函数(Functions of Two or More Random Variables) categories: - Mathematic - Probab ...
- CComboBoxEx添加图像CImageList无法正常显示
<1>给控件 CComboBox绑定变量 .cpp中 DDX_Control(pDX, IDC_COMBO_PHOTO_IMG, m_ComboBoxPhotoImg); CComboBo ...
- Java Collection Framework 备忘点
最顶端是两个接口,集合和映射—— Collection<T> / Map<K, V> List 列表 保持插入顺序 ArrayList 擅长随机读 LinkedList ...
- redis之不重启,切换RDB备份到AOF备份
确保redis版本在2.2以上 [root@pyyuc /data 22:23:30]#redis-server -v Redis server v=4.0.10 sha=00000000:0 mal ...
- 2019-2020 ICPC, NERC, Northern Eurasia Finals (Unrated, Online Mirror, ICPC Rules, Teams Preferred)
这是一场三人组队赛来的,单人带电子模板不限时单挑试一下.按照难度排序. B - Balls of Buma 题意:玩祖玛,射入任意颜色的球一个,当某段长度变长了且长度变长后>=3则这段就会消除, ...
- HDU 1160 FatMouse's Speed ——(DP)
又是那个lis变形的题目. 但是不好定义严格的比较符号,因此只能n^2去做.值得注意的一个是要先排序,因为可能可以先选后面的再选前面的,先排序的话就能够避免这个问题.但是要注意,因为要输出路径,所以要 ...