求无向图的割点和桥模板(tarjan)
一.基本概念
1.桥:若无向连通图的边割集中只有一条边,则称这条边为割边或者桥 (离散书上给出的定义。。
通俗的来说就是无向连通图中的某条边,删除后得到的新图联通分支至少为2(即不连通;
2.割点:若无向连通图的点割集中只有一个点,则称这个点为割点或者关节点 ;
通俗的来说就是无向连通图中的某条边,删除后得到的新图连通分支至少为2;
二:tarjan算法求割点和桥
1.割点:1)当前节点为树根的时候,条件是“要有多余一棵子树”;
如果这有一颗子树,去掉这个点也没有影响,如果有两颗子树,去掉这点,两颗子树就不连通了;
2)当前节点u不是树根的时候,条件是“low[v]>=dfn[u]”,也就是在u之后遍历的点,能够向上翻,
最多到u,如果能翻到u的上方,那就有环了,去掉u之后,图仍然连通。
2.桥:若一条无向边(u,v)是桥,
1)当且仅当无向边(u,v)是树枝边,需要满足dfn(u)<low(v),即v向上翻不到u及其以上的点,
那么u--v之间一定能够有1条或者多条边不能删去, 因为他们之间有部分无环,是桥,
如果v能上翻到u那么u--v就是一个环,删除其中一条路径后,仍然是连通的。
3.注意点:1)求桥的时候:因为边是无方向的,所以父亲孩子节点的关系需要自己规定一下,
在tarjan的过程中if(v不是u的父节点) low[u]=min(low[u],dfn[v]);
因为如果v是u的父亲,那么这条无向边就被误认为是环了。
2)找桥的时候:注意看看有没有重边,有重边的边一定不是桥,也要避免误判。
4.也可以先进行tarjan(),求出每一个点的dfn和low,并记录dfs过程中的每个点的父节点,
遍历所有点的low,dfn来寻找桥和割点
代码:
#include <iostream>
#include <stdio.h>
#include <vector>
#include <string.h>
using namespace std; const int MAXN=1e5+;
vector<int> mp[MAXN];
bool is_cut[MAXN];
int n, m, count=;
int low[MAXN], dfn[MAXN], pre[MAXN];//pre[u]记录u的父亲节点编号
//dfn[u]记录节点u在DFS过程中被遍历到的次序号,low[u]记录节点u或u的子树通过非父子边追溯到最早的祖先节点(即DFS次序号最小 void tarjan(int u, int fu){
pre[u]=fu;//记录当前u的父亲节点
dfn[u]=low[u]=count++;
for(int i=; i<mp[u].size(); i++){
int v=mp[u][i];
if(dfn[v]==-){
tarjan(v, u);
low[u]=min(low[u], low[v]);
}else if(fu!=v){//如果v是u的父亲的话,即有重边,那么不可能是桥
low[u]=min(low[u], dfn[v]);
}
}
} void solve(void){
int rootson=;
tarjan(, );
for(int i=; i<=n; i++){
int v=pre[i];
if(v==){
rootson++;//统计根节点的子树个数,若其不小于2,即为割点
}else if(low[i]>=dfn[v]){
is_cut[v]=true;
}
}
if(rootson>) is_cut[]=true;
puts("割点为:");
for(int i=; i<=n; i++){//输出割点
if(is_cut[i]){
printf("%d ", i);
}
}
puts("\n桥为:");
for(int i=; i<=n; i++){
int v=pre[i];
if(v>&&low[i]>dfn[v]){
printf("%d %d\n", v, i);
}
}
puts("");
} int main(void){
scanf("%d%d", &n, &m);
for(int i=; i<m; i++){
int x, y;
scanf("%d%d", &x, &y);
mp[x].push_back(y);
mp[y].push_back(x);
}
memset(dfn, -, sizeof(dfn));
memset(low, -, sizeof(low));
solve();
return ;
}
求桥的另一种写法(更快一点):
#include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std; const int MAXN = 1e5 + ; struct node{
int v, next, use;
}edge[MAXN << ]; bool bridge[MAXN];
int low[MAXN], dfn[MAXN], vis[MAXN];
int head[MAXN], pre[MAXN], ip, sol, count; void init(void){
memset(head, -, sizeof(head));
memset(vis, false, sizeof(vis));
memset(bridge, false, sizeof(bridge));
count = sol = ip = ;
} void addedge(int u, int v){
edge[ip].v = v;
edge[ip].use = ;
edge[ip].next = head[u];
head[u] = ip++;
} void tarjan(int u){
vis[u] = ;
dfn[u] = low[u] = count++;
for(int i = head[u]; i != -; i = edge[i].next){
if(!edge[i].use){
edge[i].use = edge[i ^ ].use = ;
int v = edge[i].v;
if(!vis[v]){
pre[v] = u;
tarjan(v);
low[u] = min(low[u], low[v]);
if(dfn[u] < low[v]){
sol++;
bridge[v] = true;
}
}else if(vis[v] == ){
low[u] = min(low[u], dfn[v]);
}
}
}
vis[u] = ;
} int main(void){
int n, m, q, x, y, cas = ;
while(~scanf("%d%d", &n, &m)){
if(!n && !m) break;
init();
for(int i = ; i < m; i++){
scanf("%d%d", &x, &y);
addedge(x, y);
addedge(y, x);
}
pre[] = ;
tarjan();
for(int i = ; i <= n; i++){
if(bridge[i]) cout << i << " " << pre[i] << endl;
}
}
return ;
}
以上参考博客:http://www.cnblogs.com/c1299401227/p/5402747.html
求无向图的割点和桥模板(tarjan)的更多相关文章
- 求 无向图的割点和桥,Tarjan模板
/* 求 无向图的割点和桥 可以找出割点和桥,求删掉每个点后增加的连通块. 需要注意重边的处理,可以先用矩阵存,再转邻接表,或者进行判重 */ const int MAXN = 10010; cons ...
- tarjan算法--求无向图的割点和桥
一.基本概念 1.桥:是存在于无向图中的这样的一条边,如果去掉这一条边,那么整张无向图会分为两部分,这样的一条边称为桥无向连通图中,如果删除某边后,图变成不连通,则称该边为桥. 2.割点:无向连通图中 ...
- Tarjan无向图的割点和桥(割边)全网详解&算法笔记&通俗易懂
更好的阅读体验&惊喜&原文链接 感谢@yxc的腿部挂件 大佬,指出本文不够严谨的地方,万分感谢! Tarjan无向图的割点和桥(割边) 导言 在掌握这个算法前,咱们有几个先决条件. [ ...
- 无向图的割点和桥 tarjan 模板
#include <bits/stdc++.h> using namespace std; const int MAXN = 20005; const int MAXM = 100005; ...
- tarjan算法--求解无向图的割点和桥
1.桥:是存在于无向图中的这样的一条边,如果去掉这一条边,那么整张无向图会分为两部分,这样的一条边称为桥 也就是说 无向连通图中,如果删除某边后,图变成不连通,则称该边为桥 2.割点:无向连通图中,如 ...
- 【关节点+桥】关节点和桥模板 Tarjan
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; con ...
- Tarjan求无向图割点、桥详解
tarjan算法--求无向图的割点和桥 一.基本概念 1.桥:是存在于无向图中的这样的一条边,如果去掉这一条边,那么整张无向图会分为两部分,这样的一条边称为桥无向连通图中,如果删除某边后,图变成不 ...
- [Tarjan系列] Tarjan算法求无向图的双连通分量
这篇介绍如何用Tarjan算法求Double Connected Component,即双连通分量. 双联通分量包括点双连通分量v-DCC和边连通分量e-DCC. 若一张无向连通图不存在割点,则称它为 ...
- [Tarjan系列] Tarjan算法求无向图的桥和割点
RobertTarjan真的是一个传说级的大人物. 他发明的LCT,SplayTree这些数据结构真的给我带来了诸多便利,各种动态图论题都可以用LCT解决. 而且,Tarjan并不只发明了LCT,他对 ...
随机推荐
- quick-cocos2d-x教程3:程序框架内文件夹分析之docs文件夹
如今我们分析框架中的docs文件夹.看看这个文档文件夹中,究竟放了那些对我们实用的东西. docs文件夹分析 UPGRADE_TO_2_2_3.md 就是讲升级的变化.详细说明:quick-cocos ...
- 【BZOJ3162】独钓寒江雪 树同构+DP
[BZOJ3162]独钓寒江雪 题解:先进行树hash,方法是找重心,如果重心有两个,则新建一个虚点将两个重心连起来,新点即为新树的重心.将重心当做根进行hash,hash函数不能太简单,我的方法是: ...
- EasyDarwin流媒体服务器实现关键帧推送功能
-本篇由团队成员Fantasy供稿! 功能背景 随着社会进步,人们对产品体验要求越来越高.EasyDarwin也不例外.为了能满足用户对链接服 后看到画面时间(也就是我们经常看到的起播时间)短的要求, ...
- Codeforces Round #401 (Div. 2) D Cloud of Hashtags —— 字符串
题目链接:http://codeforces.com/contest/777/problem/D 题解: 题意:给出n行字符串,对其进行字典序剪辑.我自己的想法是正向剪辑的,即先对第一第二个字符串进行 ...
- 腾讯Hermes设计概要——数据分析用的是列存储,词典文件前缀压缩,倒排文件递增id、变长压缩、依然是跳表-本质是lucene啊
转自:http://data.qq.com/article?id=817 三.Hermes设计概要 架构描述 系统核心进程均采用分散化设计,根据业务发展需求,可随意扩缩容机器; 周期性数据直接通过td ...
- Mac的环境变量
在终端输入: vim ~/.bash_profile 按i切换到INSERT模式.然后把路径按照下面的格式写进去.然后输入:wq保存退出. export PATH=${PATH}:/Users/Dru ...
- 「ZJOI2007」「LuoguP1169」棋盘制作(并查集
题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8×88 \times 88×8大小的黑白相间的方阵,对应八八六十四卦 ...
- [ZJOI 2010] 排列计数
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=2111 [算法] 一种比较好的理解方式是将该序列看成是一棵堆式存储的二叉树 那么问题转 ...
- 关于yolov3 训练输出值
Region xx: cfg文件中yolo-layer的索引: Avg IOU:当前迭代中,预测的box与标注的box的平均交并比,越大越好,期望数值为1: Class: 标注物体的分类准确率,越大越 ...
- HDMI 8193 配置
1, User space:ProjectConfig.mkMTK_HDMI_SUPPORT = yes MTK_MULTIBRIDGE_SUPPORT = yesMTK_INTERNAL_HDMI_ ...