题目链接 Black Nodes in Subgraphs

题目意思就是在一棵树中所有点标记为两种颜色(黑和白)

然后询问是否存在大小为X恰好有Y个黑点的连通块

这题我们可以用树型背包的方法

设$f[i][j][0]$为以$i$为根的子树中大小为$j$的连通块的黑点数目的最小值,该连通块必须经过$i$

$f[i][j][1]$为以$i$为根的子树中大小为$j$的连通块的黑点数目的最大值,该连通块必须经过$i$

那么转移的时候有

$f[x][i + j][0] = min(f[x][i + j][0], f[x][i][0] + f[u][j][0]);$
$f[x][i + j][1] = max(f[x][i + j][1], f[x][i][1] + f[u][j][1]);$

#include <bits/stdc++.h>

using namespace std;

#define rep(i, a, b)	for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i) const int N = 5010;
int f[N][N][2], sz[N];
vector <int> v[N];
int T, n, q;
int c[N], F[N], G[N]; void dfs(int x, int fa){
sz[x] = 1;
if (c[x]) f[x][1][0] = f[x][1][1] = 1;
else f[x][1][0] = f[x][1][1] = 0; for (auto u : v[x]){
if (u == fa) continue;
dfs(u, x);
dec(i, sz[x], 1){
rep(j, 1, sz[u]){
f[x][i + j][0] = min(f[x][i + j][0], f[x][i][0] + f[u][j][0]);
f[x][i + j][1] = max(f[x][i + j][1], f[x][i][1] + f[u][j][1]);
}
} sz[x] += sz[u];
} rep(i, 1, sz[x]){
F[i] = min(F[i], f[x][i][0]);
G[i] = max(G[i], f[x][i][1]);
}
} int main(){ scanf("%d", &T);
while (T--){
scanf("%d%d", &n, &q);
rep(i, 0, n) v[i].clear();
memset(sz, 0, sizeof sz);
rep(i, 0, n) rep(j, 0, n) f[i][j][0] = 1 << 27, f[i][j][1] = 0;
rep(i, 0, n) F[i] = 1 << 27, G[i] = 0; rep(i, 1, n - 1){
int x, y;
scanf("%d%d", &x, &y);
v[x].push_back(y);
v[y].push_back(x);
} rep(i, 1, n) scanf("%d", c + i);
dfs(1, 0); for (; q--; ){
int x, y;
scanf("%d%d", &x, &y);
puts(F[x] <= y && G[x] >= y ? "Yes" : "No");
}
} return 0; }

Codechef Black Nodes in Subgraphs(树型背包)的更多相关文章

  1. HDU 1561:The more, The Better(有依赖的树型背包)

    http://acm.hdu.edu.cn/showproblem.php?pid=1561 题意:有n个点,容量为m,每个点有一个价值,还给出n条边,代表选第i个点之前必须先选ai,问最多的价值能取 ...

  2. JS树型菜单

    本树型菜单主要实现功能有:基本的树型菜单,可勾选进行多选项操作. 本树型菜单适合最初级的学者学习,涉及内容不难,下面看代码. 首先看View的代码,第一个<div>用来定义树显示的位置和i ...

  3. POJ 3398 Perfect Service(树型动态规划,最小支配集)

    POJ 3398 Perfect Service(树型动态规划,最小支配集) Description A network is composed of N computers connected by ...

  4. 路径字符串数据转化为树型层级对象,path to json tree

    由于项目中使用了react 及 ant-design ,在使用tree树型控件时,需要 类似下面的数据, const treeData = [{ title: '0-0', key: '0-0', c ...

  5. 【XSY1905】【XSY2761】新访问计划 二分 树型DP

    题目描述 给你一棵树,你要从\(1\)号点出发,经过这棵树的每条边至少一次,最后回到\(1\)号点,经过一条边要花费\(w_i\)的时间. 你还可以乘车,从一个点取另一个点,需要花费\(c\)的时间. ...

  6. 【POJ 2486】 Apple Tree(树型dp)

    [POJ 2486] Apple Tree(树型dp) Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8981   Acce ...

  7. 初学树型dp

    树型DP DFS的回溯是树形DP的重点以及核心,当回溯结束后,root的子树已经被遍历完并处理完了.这便是树形DP的最重要的特点 自己认为应该注意的点 好多人都说在更新当前节点时,它的儿子结点都给更新 ...

  8. ASP.NET Aries 入门开发教程8:树型列表及自定义右键菜单

    前言: 前面几篇重点都在讲普通列表的相关操作. 本篇主要讲树型列表的操作. 框架在设计时,已经把树型列表和普通列表全面统一了操作,用法几乎是一致的. 下面介绍一些差距化的内容: 1:树型列表绑定: v ...

  9. Rafy 领域实体框架 - 树型实体功能(自关联表)

      在 Rafy 领域实体框架中,对自关联的实体结构做了特殊的处理,下面对这一功能进行讲解. 场景 在开发数据库应用程序时,往往会遇到自关联表的场景.例如,分类信息.组织架构中的部门.文件夹信息等,都 ...

随机推荐

  1. 服务器TIME_WAIT和CLOSE_WAIT分析和解决办法

    先上两张图: 查看TIME_WAIT和CLOSE_WAIT数的命令: netstat -n | awk '/^tcp/ {++S[$NF]} END {for(a in S) print a, S[a ...

  2. python输出mssql 查询结果示例

    # -*- coding: utf-8 -*-# python 3.6import pymssql conn=pymssql.connect(host='*****',user='******',pa ...

  3. POJ:1086-Parencodings

    Parencodings Time Limit: 1000MS Memory Limit: 10000K Description Let S = s1 s2-s2n be a well-formed ...

  4. ACM Changchun 2015 L . House Building

    Have you ever played the video game Minecraft? This game has been one of the world's most popular ga ...

  5. 实践自己的WebSite______流水

    尝试从头至尾搭建一个MVC的网站,主要以流水的方式进行进度和记录,而不讨论技术的部分. 1,在Controller下创建两个文件夹,分别为sys和Business,分别对应于系统功能和业务逻辑.比如登 ...

  6. debian软raid

    http://www.linuxidc.com/Linux/2013-06/86487.htm  

  7. hdu2604 递推转换矩阵快速幂

    刚开始还以为用位运算与或几下几个循环就搞定了,算着算着发现不行........ 还是一种固定的切题角度,我假设有长度为n,总的排列数位f(n),怎么算他呢?从后往前考虑,因为大多数情况,都是用前面的结 ...

  8. 虚拟机上的Linux学习

    title: 虚拟机上的Linux学习 date: 2018-08-08 15:48:28 updated: tags: [Linux,学习笔记] description: keywords: com ...

  9. Diango 一——URL

    内容概要 1.web框架初识 2.MTV模式 3.Django创建流程和命令行工具 4.配置文件  settings 5.视图函数  views 6.路由系统  URL 7.模板系统  templat ...

  10. cobbler 安装centos7.3时GPT问题(五)

    磁盘分区表MBR和GPT介绍: MBR(Master Boot Record):最大只支持2 TB的盘,最多只支持4个主分区,信息只存储在一个区域. GPT(GUID partition table) ...