Tarjan的强联通分量
求强联通分量有很多种。 《C++信息学奥赛一本通》 中讲过一个dfs求强联通分量的算法Kosdaraju,为了骗字数我就待会简单的说说。然而我们这篇文章的主体是Tarjan,所以我肯定说完之后再赞扬一下Tarjan大法好是不是
首先我们讲一下强联通分量
强联通分量指的是图的一个子图。在这个子图中,任意两个节点都可以互相到达。从定义上我们就可以看出是一个有向图来,因为任意一个无向图都符合该定义。
而它的标准定义是:有向图中任意两点都联通的最大子图。
咳咳,首先庆祝一下哈——本人博客的第一张图。绘图历时3分钟。
在咱们举的例子中,可以看出1 、2 、3 、5 通过边可以相互到达,它们算一个强联通分量,但4却被它们隔绝在外。从图中可以看出,从4点出发不能到达任意一个点。所以它单个节点也算一个强联通分量。所以图中的强联通分量有两个:一个是1-2-3-5,一个是4。
ok看完了强联通分量是什么我们就讲一下Kosaraju。
这个算法的思路是,对图进行DFS并记录每个点的退出顺序。再构造反图(就是有向边的方向全都反过来),按照退出顺序的逆序DFS反图,对得到的点进行染色即为强联通分量。
讲完思路开始模拟。以起点1为起点遍历顺序如下:
[ 1 2 3 5 4 5 3 2 4 4 1 ]
加粗斜体外带下划线的部分就是本图的退出顺序。
于是我们得到这样一个数组:[ 5 3 2 4 1 ] 。按照这个数组的逆序对反图遍历得到:
[ 5 3 2 1 退出 4 退出 ]
即得到要求的两个强联通分量。
还要两遍DFS,麻烦的一比。看我大Tarjan一遍DFS就能求出强联通分量
首先我们要明确Tarjan要用到的两个数组:dfn[] 和 low[]
dfn指的是在DFS过程中访问到该点的顺序。从1开始DFS全图,那么1的dfn值就是1,2的dfn值是2,5的dfn值是4,4的dfn值是5。剩下的一个类推
那么low呢?low指的是如果逆着DFS序往前回溯,该节点最早是由哪个节点走过来的。
比如在上图中2 、3 、5 、4 最早都是由1走过来的,所以它们的low值都是1
下面贴出dfn和low的算法
每次dfs(点u){
dfn[u] = 进入 dfs() 函数的次数 (自己定义一个时间戳记录 如 time)
枚举与其相邻的点v{
如果 没有 访问过点v { ( 就是dfs树上的树边 )
dfs(v);
如果 v 能追溯 到 比“u 追溯到的最早的点” 更早的点;
那么 u 就能 通过 v 来追溯到 那个点;
low[u]=min(low[u],low[v]);
}
如果 访问过点v && v在栈中
low[u]=min(low[u],dfn[v]);
}
缩点
}
上面那些伪代码是从伟大的GeneralLiu那里带过来的,在此先%%%
然后 假设我们走到一个节点i,发现这个i不能继续扩展了,也就是dfn[i]==low[i]
于是我们开始往回走。往回走的过程中,我们就把和它一个分量的节点进行染色,给它们统一的标记。 最后统计有多少种不同的标记即是强联通分量个数
luogu的一道题刻录光盘非常好,可以用于练手。
放代码
#include<iostream>
#include<cstring>
using namespace std;
int head[],num;
struct Edge{
int next,to;
}edge[];
int stack[],top;
int color[],cnt;
int dfn[],low[];
int ID;
bool jd[];
int vis[];
inline void add(int from,int to){
edge[++num]={head[from],to};
head[from]=num;
} void tarjan(int x){
dfn[x]=++ID;
low[x]=ID;
jd[x]=;
stack[++top]=x;
for(int i=head[x];i;i=edge[i].next){
int to=edge[i].to;
if(!dfn[to]){
tarjan(to);
low[x]=min(low[x],low[to]);
}
else if(jd[to]) low[x]=min(low[x],dfn[to]);
}
if(dfn[x]==low[x]){
jd[x]=;
color[x]=++cnt;
while(stack[top]!=x){
color[stack[top--]]=cnt;
jd[stack[top+]]=;
color[stack[top+]]=cnt;
}
top--;
} } int main(){
int n;
cin>>n;
int x;
for(int i=;i<=n;++i){
while(cin>>x&&x!=){
add(i,x);
}
}
for(int i=;i<=n;++i){
if(!dfn[i]) tarjan(i);
}
memset(jd,,sizeof(jd));
for(int i=;i<=n;++i){
for(int j=head[i];j;j=edge[j].next){
if(color[i]!=color[edge[j].to]){
jd[color[edge[j].to]]=;
}
}
}
int ans=;
for(int i=;i<=cnt;++i) if(!jd[i]) ans++;
cout<<ans<<endl;
return ;
}
Tarjan的强联通分量的更多相关文章
- tarjan求强联通分量
tarjan求强联通分量 变量含义说明: pre[i]:i点的被访问的时钟编号,被分配后保持不变 low[i]:i点能访问的最先的点的时钟编号,随子节点改变 scc_no[i]:i点所在的强联通分量的 ...
- Tarjan求强联通分量+缩点
提到Tarjan算法就不得不提一提Tarjan这位老人家 Robert Tarjan,计算机科学家,以LCA.强连通分量等算法闻名.他拥有丰富的商业工作经验,1985年开始任教于普林斯顿大学.Tarj ...
- tarjan模板 强联通分量+割点+割边
// https://www.cnblogs.com/stxy-ferryman/p/7779347.html ; struct EDGE { int to, nt; }e[N*N]; int hea ...
- USACO06JAN The Cow Prom /// tarjan求强联通分量 oj24219
题目大意: n个点 m条边的图 求大小大于1的强联通分量的个数 https://www.cnblogs.com/stxy-ferryman/p/7779347.html tarjan求完强联通分量并染 ...
- Tarjan算法---强联通分量
1.基础知识 在有向图G,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极大强连通子 ...
- tarjan求强联通分量 模板
void tarjan(int u) { dfn[u]=low[u]=++dfs_clock; stack_push(u); for (int c=head[u];c;c=nxt[c]) { int ...
- 培训补坑(day2:割点与桥+强联通分量)
补坑ing... 好吧,这是第二天. 这一天我们主要围绕的就是一个人:tarjan......创造的强联通分量算法 对于这一天的内容我不按照顺序来讲,我们先讲一讲强联通分量,然后再讲割点与桥会便于理解 ...
- 【POJ 1236 Network of Schools】强联通分量问题 Tarjan算法,缩点
题目链接:http://poj.org/problem?id=1236 题意:给定一个表示n所学校网络连通关系的有向图.现要通过网络分发软件,规则是:若顶点u,v存在通路,发给u,则v可以通过网络从u ...
- 强联通分量-tarjan算法
定义:在一张有向图中,两个点可以相互到达,则称这两个点强连通:一张有向图上任意两个点可以相互到达,则称这张图为强连通图:非强连通图有极大的强连通子图,成为强联通分量. 如图,{1},{6}分别是一个强 ...
随机推荐
- 5分钟部署一个Hello World Servlet到CloudFoundry
首先从我的Github下载我写好的hello world Servlet到本地. 安装Maven,然后执行命令行mvn clean install,确保build成功,在项目根目录的target文件夹 ...
- UVA12904 Load Balancing(中途相遇法)
虽然这题可以用暴力n^3过,但是还有有种n^2的方法的,枚举b,对于b,分别枚举a和c,得到对于这个b的最优解,然后从所以b中选一个最优的. 要保证字典序最小,只要从小往大枚举就好了 感谢moonfl ...
- git 作成
Git global setup git config --global user.name "高 文龍" git config --global user.email " ...
- tpcc-mysql运行结果解读
前言 首先我们需要知道tpcc-mysql是干什么的.TPC-C是专门针对联机交易处理系统(OLTP系统)的规范,一般情况下我们也把这类系统称为业务处理系统.tpcc-mysql是percona基于T ...
- Python 继承实现的原理(继承顺序)
继承顺序 Python3 : 新式类的查找顺序:广度优先 新式类的继承: class A(object): Python2 3 都是了 MRO算法--生成一个列表保存继承顺序表 不找到底部 Pytho ...
- idea spring boot启动项目上面有红色叉
一打开IDEA,在启动debug项目有一个红色叉如下图 因为打开项目可以主项目的包没有加载进来,解决办法就是右击项目->maven->Reimport 就搞定了..
- 如何将oracle查询的结果传输给变量
如何将oracle查询的结果传输给变量 1. sqlplus查询时的变量设置 set echo off; #控制start命令不列出命令文件中的每一命令 set feedback off; #显示由查 ...
- 修改broadcom 4322无线网卡ID教程,不再显示第三方无线网卡
本帖最后由 hellokingabc 于 2016-1-11 03:07 编辑 黑苹果已经基本完美,但是无线网卡总是出现问题,经常断网,经过搜索,原因在于无线网卡在OSX系统下显示为第三方无线网卡,只 ...
- codis 配置
#修改dashboard.toml: coordinator_name = "zookeeper" coordinator_addr = "192.168.56.101: ...
- 18/07/2017 R matrix
矩阵:二维数组,元素拥有相同模式(数值型,字符型或者逻辑型) mymatrix <- matrix (vector, nrow_num_of_rows, ncol_num_of_columns, ...