题目描述

Tz养了一群仓鼠,他们都有英文小写的名字,现在Tz想用一个字母序列来表示他们的名字,只要他们的名字是字母序列中的一个子串就算,出现多次可以重复计算。现在Tz想好了要出现多少个名字,请你求出最短的字母序列的长度是多少。n个字符串保证不互相包含。

输入

输入:第一行n(1<=n<=200)和m(1<=m<=10的9此方),n表示有多少个仓鼠,m表示Tz希望出现名字的次数,接下来n行,每行都是仓鼠的名字(中间没有空格)。

输出

输出:一行,最短的字母序列的长度。

样例输入

4 5
monika
tomek
szymon
bernard

样例输出

23


题解

Hash+倍增Floyd

由于n只有200,并且任意两串不包含。所以可以预处理出某个串后还需要加几个字符可以变成另一个串,可以使用Hash解决。

然后题目要求出现总数为m,相当于要经过m-1个点的最短路径,使用倍增Floyd快速幂求出。

最后的答案为 原串长+最短路 的最小值。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef unsigned long long ull;
char str[100010];
ull hash[100010] , base[100010];
int lp[210] , rp[210] , n;
struct data
{
ull v[210][210];
data() {memset(v , 0x3f , sizeof(v));}
data operator*(const data &a)const
{
data ans;
int i , j , k;
for(k = 1 ; k <= n ; k ++ )
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
ans.v[i][j] = min(ans.v[i][j] , v[i][k] + a.v[k][j]);
return ans;
}
}a , ret;
data pow(data x , int y)
{
data ans;
int i;
for(i = 1 ; i <= n ; i ++ ) ans.v[i][i] = 0;
while(y)
{
if(y & 1) ans = ans * x;
x = x * x , y >>= 1;
}
return ans;
}
int main()
{
int m , i , j , k;
ull ans = 1ull << 63;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= n ; i ++ )
lp[i] = rp[i - 1] + 1 , scanf("%s" , str + lp[i]) , rp[i] = strlen(str + lp[i]) + lp[i] - 1;
base[0] = 1;
for(i = 1 ; i <= rp[n] ; i ++ )
base[i] = base[i - 1] * 2333 , hash[i] = hash[i - 1] * 2333 + str[i];
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
for(k = 0 ; k < rp[i] - lp[i] + 1 && k < rp[j] - lp[j] + 1 ; k ++ )
if(hash[rp[i]] - hash[rp[i] - k] * base[k] == hash[lp[j] + k - 1] - hash[lp[j] - 1] * base[k])
a.v[i][j] = rp[j] - lp[j] + 1 - k;
ret = pow(a , m - 1);
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
ans = min(ans , rp[i] - lp[i] + 1 + ret.v[i][j]);
printf("%llu\n" , ans);
return 0;
}

【bzoj2085】[Poi2010]Hamsters Hash+倍增Floyd的更多相关文章

  1. BZOJ 2085 luogu P3502 [POI2010]Hamsters (KMP、Floyd、倍增)

    数组开小毁一生-- 题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2085 这题在洛谷上有个条件是"互不包含",其实 ...

  2. bzoj2085 [Poi2010]Hamsters 矩阵快速幂+字符串hash

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2085 题解 考虑暴力 DP 的做法.令 \(dp[i][j]\) 表示以 \(j\) 为开头的 ...

  3. BZOJ2085 : [Poi2010]Hamsters

    设g[i][j]为i串至少加上几个字符后才能包含j,可以通过Hash求出. 然后就是求经过m-1条边的最短路,用倍增加速Floyed即可,时间复杂度$O(n^3\log m)$. #include&l ...

  4. 【CF461E】Appleman and a Game 倍增floyd

    [CF461E]Appleman and a Game 题意:你有一个字符串t(由A,B,C,D组成),你还需要构造一个长度为n的字符串s.你的对手需要用t的子串来拼出s,具体来说就是每次找一个t的子 ...

  5. 2018.11.09 bzoj4773: 负环(倍增+floyd)

    传送门 跟上一道题差不多. 考虑如果环上点的个数跟最短路长度有单调性那么可以直接上倍增+floyd. 然而并没有什么单调性. 于是我们最开始给每个点初始化一个长度为0的自环,于是就有单调性了. 代码: ...

  6. 2018.11.09 bzoj1706: relays 奶牛接力跑(倍增+floyd)

    传送门 倍增+floyd板子题. 先列出状态fi,j,kf_{i,j,k}fi,j,k​表示经过iii条边从jjj到kkk的最短路. 然后发现可以用fi−1,j,kf_{i-1,j,k}fi−1,j, ...

  7. BZOJ.4180.字符串计数(后缀自动机 二分 矩阵快速幂/倍增Floyd)

    题目链接 先考虑 假设S确定,使构造S操作次数最小的方案应是:对T建SAM,S在SAM上匹配,如果有S的转移就转移,否则操作数++,回到根节点继续匹配S.即每次操作一定是一次极大匹配. 简单证明:假设 ...

  8. BZOJ4773: 负环(倍增Floyd)

    题意 题目链接 Sol 倍增Floyd,妙妙喵 一个很显然的思路(然而我想不到是用\(f[k][i][j]\)表示从\(i\)号点出发,走\(k\)步到\(j\)的最小值 但是这样复杂度是\(O(n^ ...

  9. bzoj2165: 大楼(倍增floyd)

    题目大意:一个有向图,n(<=100)个点求一条长度>=m(<=10^18)的路径最少经过几条边. 一开始以为是矩乘,蓝鹅当时还没开始写,所以好像给CYC安利错了嘿嘿嘿QWQ 第一眼 ...

随机推荐

  1. (转)在SQL Server 2016,Visual Studio 2017环境下,连接数据库屡屡失败,在connectionString上出的问题

    适用情景: 1,ServerVersion出了问题,“SqlCnt.ServerVersion”引发了类型“System.InvalidOperationException”的异常 2,在String ...

  2. CF Gym 100463B Music Mess (思路)

    好题,当时想了半个小时,我往图论方面去想了,把出现过的字符串当场点,然后相互连边,那么就构成了一个三角形,一个大于三个点的连通分量里有以下结论:度为二的点可能是track,度为大于二的点一定不是tra ...

  3. UVA11212 EditingaBook ( IDA*搜索)

    首先说说IDS,就DFS限定一个层数上限maxd,如果在maxd范围内没有找到解,就增加maxd,继续搜索. 当访问到当前结点u时,估计还要搜索h(u)层,如果h(u)+当前层数d>maxd的时 ...

  4. xcdatamodel的实质

    修改后缀名为zip或者其它,可以查看到xcdatamodel是一个描述文件 <?xml version="1.0" encoding="UTF-8" st ...

  5. ECshop安装提示cls_image::gd_version() 和不支持JPEG

    ecshop版本:ECShop_V2.7.3_UTF8_release1106php 版本 5.5--------------------------------------------------- ...

  6. java ArrayList remove 2 及正确方法

    https://www.cnblogs.com/chrischennx/p/9610853.html 正确方式 方法一,还是fori,位置前挪了减回去就行了, remove后i--: public v ...

  7. PhoneGap+JQuery Mobile移动应用开发学习笔记

    最近一直在学习使用PhoneGap+JQuery Mobile的开发框架开发Android应用,抛开这个框架的运行效率不说,暂且将使用中遇到的问题进行一下整理. 1.JS文件引用顺序 也许在进行web ...

  8. I/O理解

    I/O是什么 我的理解I/O就是用于读写的一个流 官方解释:I/O(英语:Input/Output),即输入/输出,通常指数据在内部存储器和外部存储器或其他周边设备之间的输入和输出. node中的io ...

  9. Python学习笔记5(函数)

    [摘要]本文详细介绍python中的函数,以及与之相关的参数和作用域的概念,并介绍递归的概念以及在程序中的应用. 函数定义 定义函数要用函数定义语句def.如下: def hello(name): r ...

  10. 转 救命的教程 anaconda下载安装包网络错误的解决办法

    折腾了一天,终于找到了这个解决办法 https://blog.csdn.net/sinat_29315697/article/details/80516498