题目链接


Solution

这道题,调了我一晚上... 一直80分 >_<|| ...

考虑到几点:

  • 分开任意一条边 \(u\) ,那么其肯定会断成两棵树.
  • 肯定是分开直径上的边最优,否则原树上最长的边仍然会存在. 其新树直径只有可能更大.
  • 令两棵子树的直径分别为 \(dist_1,dist_2\) ,选取的两个点分别为 \(x_1,x_2.\)

    其达到两棵子树的最远距离分别为 \(dis_1,dis_2\).

    那么组成的新树直径即为:
    \[max(dist_1,dist_2,dis_1+dis_2+w_u)
    \]


所以我们先枚举断开直径上的边,然后分别找到断开后两棵子树的直径.

接着我们讨论 \(dis_1,dis_2\) 最优情况.

  1. 其 \(dis\) 为其到子树直径较远的一端.
  2. 如果 \(x_1,x_2\) 在子树的直径上,那么显然会更优,因为如果不在直径上,它还会多出一小段距离.
  3. 然后就可以考虑在直径上的话,显然取直径的中点(如果有的话)会最优,因为此时相当于平分直径,然后使得可能的答案尽量小了.
  4. 如果没有直径中点的话,那么我们可以找到一条“中边”,使得其断开的直径两端距离之差最小.

那么我们找的策略也就出来了.直接找到两棵子树上直径的 "中边",然后对两条中边上的四个点进行讨论选取即可.


Code

#include<bits/stdc++.h>
#define ll long long
const ll inf=192608173;
using namespace std;
const int maxn=5008;
struct sj{int to,next;ll w;}
a[maxn*2];
int head[maxn],size;
int v[maxn],now[maxn];
int road[maxn],road1[maxn];
int n,num,cntt,cnt,x,y,w;
ll nowdis,maxx,ans=inf;
ll xx[maxn],xx1[maxn],dis[maxn];
ll dis1,dis2,dis3,dis4; int read()
{
int f=1,w=0; char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch<='9'&&ch>='0'){w=w*10+ch-'0';ch=getchar();}
return f*w;
} void add(int x,int y,int w)
{
a[++size].to=y;
a[size].next=head[x];
head[x]=size;
a[size].w=w;
} void dfs(int x)
{
v[x]=1;now[++num]=x;
for(int i=head[x];i;i=a[i].next)
{
int tt=a[i].to;
if(!v[tt])
{
nowdis+=a[i].w;
dis[num]=a[i].w;
dfs(tt);
nowdis-=a[i].w;
}
}
if(nowdis>maxx)
{
maxx=nowdis; cnt=num;
for(int i=1;i<=cnt;i++)
road[i]=now[i],xx[i]=dis[i];
//每一次 road 都是找出来的临时最长边.
}
v[x]=0; num--;return;
} int main()
{
n=read();
for(int i=1;i<n;i++)
{
x=read(); y=read(); w=read();
add(x,y,w);
add(y,x,w);
}
dfs(1); dfs(road[cnt]); cntt=cnt;
for(int i=1;i<=cnt;i++)
road1[i]=road[i],xx1[i]=xx[i];
//xx1为原直径上的边长度,road1为原直径上的点.
for(int i=1;i<cntt;i++)
{
ll x1=0,x2=0,maxx1,maxx2;
dis1=dis2=dis3=dis4=0; v[road1[i+1]]=1; maxx=-1;
//给右边打上标记,让他仅在左边的子树中查询
dfs(road1[i]);
dfs(road[cnt]);
maxx1=maxx;
for(int j=1;j<cnt;j++)
{
x1+=xx[j];
if(x1>maxx1-x1)
{dis1=x1,dis2=maxx1-x1+xx[j];break;}
}
//找到"中边" v[road1[i]]=1; maxx=-1;
//给左边打上标记
dfs(road1[i+1]);
dfs(road[cnt]);
maxx2=maxx;
for(int j=1;j<cnt;j++)
{
x2+=xx[j];
if(x2>maxx2-x2)
{dis3=x2,dis4=maxx2-x2+xx[j];break;}
}
v[road1[i]]=0; ans=min(ans,max(dis1+dis3+xx1[i],max(maxx1,maxx2)));
ans=min(ans,max(dis1+dis4+xx1[i],max(maxx1,maxx2)));
ans=min(ans,max(dis2+dis3+xx1[i],max(maxx1,maxx2)));
ans=min(ans,max(dis2+dis4+xx1[i],max(maxx1,maxx2)));
}
cout<<ans<<endl;
}

[TJOI2017] 城市 (树的直径,贪心)的更多相关文章

  1. luogu P3761 [TJOI2017]城市 树的直径 bfs

    LINK:城市 谢邀,学弟说的一道毒瘤题. 没有真正的省选题目毒瘤 或者说 写O(n)的做法确实毒瘤. 这里给一个花20min就写完的非常好写的暴力. 容易想到枚举哪条边删掉 删掉之后考虑在哪两个点上 ...

  2. bzoj4890[Tjoi2017]城市(树的半径)

    4890: [Tjoi2017]城市 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 149  Solved: 91[Submit][Status][D ...

  3. [LOJ3014][JOI 2019 Final]独特的城市——树的直径+长链剖分

    题目链接: [JOI 2019 Final]独特的城市 对于每个点,它的答案最大就是与它距离最远的点的距离. 而如果与它距离为$x$的点有大于等于两个,那么与它距离小于等于$x$的点都不会被计入答案. ...

  4. Sonya and Ice Cream CodeForces - 1004E 树的直径, 贪心

    题目链接 set维护最小值贪心, 刚开始用树的直径+单调队列没调出来... #include <iostream>#include <cstdio> #include < ...

  5. LG5536 「XR-3」核心城市 树的直径

    问题描述 LG5536 题解 两次 \(\mathrm{dfs}\) 求树的直径. 然后找到树的直径的中点. 然后按照 子树中最深的点深度-自己深度 排序,贪心选取前 \(k\) 个. \(\math ...

  6. cf 911F 树的直径+贪心

    $des$ 给定一棵 n 个节点的树,你可以进行 n ? 1 次操作,每次操作步骤如下:选择 u,v 两个度数为 1 的节点.将 u,v 之间的距离加到 ans 上.将 u 从树上删除.求一个操作序列 ...

  7. [SDOI2013]直径 (树的直径,贪心)

    题目链接 Solution 我们直接找到一条直径 \(s\),起点为 \(begin\),终点为 \(end\). 从前往后遍历点 \(u\) ,若子树中最大的距离与 \(dis(u,begin)\) ...

  8. CF911F Tree Destruction (树的直径,贪心)

    题目链接 Solution 1.先找出树的直径. 2.遍历直径沿途的每一个节点以及它的子树. 3.然后对于每个非直径节点直接统计答案,令直径的两个端点为 \(x_1,x_2\) . \[Ans=\su ...

  9. 换根DP+树的直径【洛谷P3761】 [TJOI2017]城市

    P3761 [TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公 ...

随机推荐

  1. 第008课_第1个ARM落版程序及引申

    form:第008课_第1个ARM裸板程序及引申 第001节_辅线1_硬件知识_LED原理图 当我们学习C语言的时候,我们会写个Hello程序.那当我们下ARM程序,也该有一个简单的程序引领我们入门, ...

  2. 解决sublime text 2总是在新窗口中打开文件(标签中打开)

    在mac下不是很喜欢sublime text 2 总是在新窗口中打开文件,很麻烦,文件打多了,就会出现N多窗口,虽然可以直接打开当前目录可以解决,但有时候查看其它项目中的单个文件,就比较麻烦.百度一直 ...

  3. Python -- 函数之推导式

    5.12 推导式 l = [] for i in range(1,11): l.append(i) print(l) # 用列表推导式 (一行搞定) l = [i for i in range(1,1 ...

  4. USACO08FEB Hotel

    题目传送门 线段树维护区间 线段树结构体 struct zzz{ int l,r,mi; //l为以左端点的为起点的最长子串 //r为以右端点为终点的最长子串 //mi是区间内部的最长子串 }tree ...

  5. 数据类型-------JavaScript

    之前只是简单的学过JavaScript和JQuery,虽然一般的要求都能完成,但并没有深入,这次是看了一个网站,很详细的教学,想重新认识一下JavaScript和JQuery. 本文摘要:http:/ ...

  6. Spring学习笔记之Spring概述

    概述   Spring是一个java应用最广的开源框架,它是于2003 年兴起的一个轻量级的Java 开发框架,由Rod Johnson 在其著作Expert One-On-One J2EE Deve ...

  7. NSString 使用 copy、strong

    // 首先定义2个属性 @property (nonatomic, strong) NSString *stStr; @property (nonatomic, copy) NSString *coS ...

  8. FMDB中的数据处理

    [self.db executeUpdate:@"create table test (a text, b text, c integer, d double, e double)" ...

  9. Docker 学习基本操作与守护式容器

    Docker 学习基本操作与守护式容器 容器操作 运行容器 docker run --name指定名字 -istdin -ttty虚拟终端 在终端中用 exit 即可退出容器,并结束运行 查看容器 p ...

  10. linux文件属性文文件类型知识

    文件类型分别介绍: 1.普通文件:我们通过用ls  -l来查看xxx.sql的属性,可以看到第一列内容为-rw-r--r--,值得注意的是第一个符号是-(英文字符减号),在Linux中,以这样的字符开 ...