题目链接


Solution

这道题,调了我一晚上... 一直80分 >_<|| ...

考虑到几点:

  • 分开任意一条边 \(u\) ,那么其肯定会断成两棵树.
  • 肯定是分开直径上的边最优,否则原树上最长的边仍然会存在. 其新树直径只有可能更大.
  • 令两棵子树的直径分别为 \(dist_1,dist_2\) ,选取的两个点分别为 \(x_1,x_2.\)

    其达到两棵子树的最远距离分别为 \(dis_1,dis_2\).

    那么组成的新树直径即为:
    \[max(dist_1,dist_2,dis_1+dis_2+w_u)
    \]


所以我们先枚举断开直径上的边,然后分别找到断开后两棵子树的直径.

接着我们讨论 \(dis_1,dis_2\) 最优情况.

  1. 其 \(dis\) 为其到子树直径较远的一端.
  2. 如果 \(x_1,x_2\) 在子树的直径上,那么显然会更优,因为如果不在直径上,它还会多出一小段距离.
  3. 然后就可以考虑在直径上的话,显然取直径的中点(如果有的话)会最优,因为此时相当于平分直径,然后使得可能的答案尽量小了.
  4. 如果没有直径中点的话,那么我们可以找到一条“中边”,使得其断开的直径两端距离之差最小.

那么我们找的策略也就出来了.直接找到两棵子树上直径的 "中边",然后对两条中边上的四个点进行讨论选取即可.


Code

#include<bits/stdc++.h>
#define ll long long
const ll inf=192608173;
using namespace std;
const int maxn=5008;
struct sj{int to,next;ll w;}
a[maxn*2];
int head[maxn],size;
int v[maxn],now[maxn];
int road[maxn],road1[maxn];
int n,num,cntt,cnt,x,y,w;
ll nowdis,maxx,ans=inf;
ll xx[maxn],xx1[maxn],dis[maxn];
ll dis1,dis2,dis3,dis4; int read()
{
int f=1,w=0; char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch<='9'&&ch>='0'){w=w*10+ch-'0';ch=getchar();}
return f*w;
} void add(int x,int y,int w)
{
a[++size].to=y;
a[size].next=head[x];
head[x]=size;
a[size].w=w;
} void dfs(int x)
{
v[x]=1;now[++num]=x;
for(int i=head[x];i;i=a[i].next)
{
int tt=a[i].to;
if(!v[tt])
{
nowdis+=a[i].w;
dis[num]=a[i].w;
dfs(tt);
nowdis-=a[i].w;
}
}
if(nowdis>maxx)
{
maxx=nowdis; cnt=num;
for(int i=1;i<=cnt;i++)
road[i]=now[i],xx[i]=dis[i];
//每一次 road 都是找出来的临时最长边.
}
v[x]=0; num--;return;
} int main()
{
n=read();
for(int i=1;i<n;i++)
{
x=read(); y=read(); w=read();
add(x,y,w);
add(y,x,w);
}
dfs(1); dfs(road[cnt]); cntt=cnt;
for(int i=1;i<=cnt;i++)
road1[i]=road[i],xx1[i]=xx[i];
//xx1为原直径上的边长度,road1为原直径上的点.
for(int i=1;i<cntt;i++)
{
ll x1=0,x2=0,maxx1,maxx2;
dis1=dis2=dis3=dis4=0; v[road1[i+1]]=1; maxx=-1;
//给右边打上标记,让他仅在左边的子树中查询
dfs(road1[i]);
dfs(road[cnt]);
maxx1=maxx;
for(int j=1;j<cnt;j++)
{
x1+=xx[j];
if(x1>maxx1-x1)
{dis1=x1,dis2=maxx1-x1+xx[j];break;}
}
//找到"中边" v[road1[i]]=1; maxx=-1;
//给左边打上标记
dfs(road1[i+1]);
dfs(road[cnt]);
maxx2=maxx;
for(int j=1;j<cnt;j++)
{
x2+=xx[j];
if(x2>maxx2-x2)
{dis3=x2,dis4=maxx2-x2+xx[j];break;}
}
v[road1[i]]=0; ans=min(ans,max(dis1+dis3+xx1[i],max(maxx1,maxx2)));
ans=min(ans,max(dis1+dis4+xx1[i],max(maxx1,maxx2)));
ans=min(ans,max(dis2+dis3+xx1[i],max(maxx1,maxx2)));
ans=min(ans,max(dis2+dis4+xx1[i],max(maxx1,maxx2)));
}
cout<<ans<<endl;
}

[TJOI2017] 城市 (树的直径,贪心)的更多相关文章

  1. luogu P3761 [TJOI2017]城市 树的直径 bfs

    LINK:城市 谢邀,学弟说的一道毒瘤题. 没有真正的省选题目毒瘤 或者说 写O(n)的做法确实毒瘤. 这里给一个花20min就写完的非常好写的暴力. 容易想到枚举哪条边删掉 删掉之后考虑在哪两个点上 ...

  2. bzoj4890[Tjoi2017]城市(树的半径)

    4890: [Tjoi2017]城市 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 149  Solved: 91[Submit][Status][D ...

  3. [LOJ3014][JOI 2019 Final]独特的城市——树的直径+长链剖分

    题目链接: [JOI 2019 Final]独特的城市 对于每个点,它的答案最大就是与它距离最远的点的距离. 而如果与它距离为$x$的点有大于等于两个,那么与它距离小于等于$x$的点都不会被计入答案. ...

  4. Sonya and Ice Cream CodeForces - 1004E 树的直径, 贪心

    题目链接 set维护最小值贪心, 刚开始用树的直径+单调队列没调出来... #include <iostream>#include <cstdio> #include < ...

  5. LG5536 「XR-3」核心城市 树的直径

    问题描述 LG5536 题解 两次 \(\mathrm{dfs}\) 求树的直径. 然后找到树的直径的中点. 然后按照 子树中最深的点深度-自己深度 排序,贪心选取前 \(k\) 个. \(\math ...

  6. cf 911F 树的直径+贪心

    $des$ 给定一棵 n 个节点的树,你可以进行 n ? 1 次操作,每次操作步骤如下:选择 u,v 两个度数为 1 的节点.将 u,v 之间的距离加到 ans 上.将 u 从树上删除.求一个操作序列 ...

  7. [SDOI2013]直径 (树的直径,贪心)

    题目链接 Solution 我们直接找到一条直径 \(s\),起点为 \(begin\),终点为 \(end\). 从前往后遍历点 \(u\) ,若子树中最大的距离与 \(dis(u,begin)\) ...

  8. CF911F Tree Destruction (树的直径,贪心)

    题目链接 Solution 1.先找出树的直径. 2.遍历直径沿途的每一个节点以及它的子树. 3.然后对于每个非直径节点直接统计答案,令直径的两个端点为 \(x_1,x_2\) . \[Ans=\su ...

  9. 换根DP+树的直径【洛谷P3761】 [TJOI2017]城市

    P3761 [TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公 ...

随机推荐

  1. Ubuntu18.04如何从英文界面更改为中文界面

    本文介绍如何将Ubuntu18.04安装后的英文界面,更改为中文界面,即系统语言由英文改为简体中文.注意,与安装中文输入法不同,两者也没有冲突. 首先进入设置(Setting),选择区域和语言(Reg ...

  2. python基础一 day15 作业

    3.处理文件,用户指定要查找的文件和内容,将文件中包含要查找内容的每一行都输出到屏幕def check_file(filename,aim): with open(filename,encoding= ...

  3. python_82_标准库_random模块

    import random print(help(random.random)) #随机整数 print(random.randint(1,7))#生成一个[1, 7]的随机整数 print(rand ...

  4. SCOPE_IDENTITY和@@IDENTITY[转]

    本文转自:http://www.cnblogs.com/daydayupanan/archive/2008/09/04/1283648.html SCOPE_IDENTITY和@@IDENTITY的作 ...

  5. c++ 拷贝资源方法

    #include "stdio.h" #include "stdlib.h" #include <sys/types.h> #include < ...

  6. php 常用函数集合(持续更新中...)

    php 常用函数集合 在php的开发中,巧妙的运用php自带的一些函数,会起到事半功倍的效果,在此,主要记录一些常用的函数 1.time(),microtime()函数 time():获取当前时间戳 ...

  7. 【android】【android studio】修改emulator的本地化环境

    Changing the emulator locale from the adb shell To change the locale in the emulator by using the ad ...

  8. 【linux】【安全】服务器安全建议

    引用自 <鸟哥的linux私房菜-服务器篇>  http://cn.linux.vbird.org/linux_server/0210network-secure_1.php 建立完善的登 ...

  9. Mysql显示某个数据库的所有表

    显示表名: show tables; //先用use进入要查看表的库 mysql> use mysql; Database changed mysql> show tables; +--- ...

  10. Python虚拟机函数机制之无参调用(一)

    PyFunctionObject对象 在Python中,任何一个东西都是对象,函数也不例外.函数这种抽象机制,是通过一个Python对象——PyFunctionObject来实现的 typedef s ...