[spoj694&spoj705]New Distinct Substrings(后缀数组)
题意:求字符串中不同子串的个数。
解题关键:每个子串一定是某个后缀的前缀,那么原问题等价于求所有后缀之间的不相同的前缀的个数。
1、总数减去height数组的和即可。
注意这里height中为什么不需要进行组合计数,因为,每一个height的左端点已经确定,所以只需变动右端点,总共$height[i]$种情况。
2、如果所有的后缀按照 suffix(sa[1]), suffix(sa[2]),suffix(sa[3]), …… ,suffix(sa[n])的顺序计算,不难发现,对于每一次新加进来的后缀 suffix(sa[k]),它将产生 n-sa[k]+1 个新的前缀。但是其中有height[k]个是和前面的字符串的前缀是相同的。所以 suffix(sa[k])将“贡献”出 n-sa[k]+1- height[k]个不同的子串。累加后便是原问题的答案。这个做法的时间复杂度为 O(n)。
类似于dp的过程
法一:
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include<iostream>
#include<cmath>
#define inf 0x3f3f3f3f
typedef long long ll;
using namespace std;
const int N=;
int wa[N],wb[N],wv[N],wc[N];
bool cmp(int *r,int a,int b,int l){return r[a]==r[b]&&r[a+l]==r[b+l];}
void make_sa(int *r,int *sa,int n,int m){
int i,j,p,*x=wa,*y=wb;
for(i=;i<m;i++) wc[i]=;
for(i=;i<n;i++) wc[x[i]=r[i]]++;
for(i=;i<m;i++) wc[i]+=wc[i-];
for(i=n-;i>=;i--) sa[--wc[x[i]]]=i;
for(j=,p=;p<n;j*=,m=p){
for(p=,i=n-j;i<n;i++) y[p++]=i;
for(i=;i<n;i++) if(sa[i]>=j) y[p++]=sa[i]-j;
for(i=;i<n;i++) wv[i]=x[y[i]];
for(i=;i<m;i++) wc[i]=;
for(i=;i<n;i++) wc[wv[i]]++;
for(i=;i<m;i++) wc[i]+=wc[i-];
for(i=n-;i>=;i--) sa[--wc[wv[i]]]=y[i];
for(swap(x,y),p=,x[sa[]]=,i=;i<n;i++) x[sa[i]]=cmp(y,sa[i-],sa[i],j)?p-:p++;
}
return;
}
int rank1[N],height[N],sa[N];
void make_height(int *r,int *sa,int n){
int i,j,k=;
for(i=;i<=n;i++) rank1[sa[i]]=i;
for(i=;i<n;height[rank1[i++]]=k)
for(k?k--:,j=sa[rank1[i]-];r[i+k]==r[j+k];k++);
return;
} int n,k,r[N];
int main(){
int t;
ios::sync_with_stdio();
cin>>t;
while(t--){
string s;
cin>>s;
for(int i=;i<s.size();i++) r[i]=(int)s[i];
r[s.size()]=;
n=s.size();
make_sa(r,sa,n+,);
make_height(r,sa,n);
ll sum=s.size()*(s.size()+)/;
for(int i=;i<=n;i++){
sum-=height[i];
}
cout<<sum<<"\n";
}
return ;
}
法二:
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include<iostream>
#include<cmath>
#define inf 0x3f3f3f3f
typedef long long ll;
using namespace std;
const int N=;
int wa[N],wb[N],wv[N],wc[N];
bool cmp(int *r,int a,int b,int l){return r[a]==r[b]&&r[a+l]==r[b+l];}
void make_sa(int *r,int *sa,int n,int m){
int i,j,p,*x=wa,*y=wb;
for(i=;i<m;i++) wc[i]=;
for(i=;i<n;i++) wc[x[i]=r[i]]++;
for(i=;i<m;i++) wc[i]+=wc[i-];
for(i=n-;i>=;i--) sa[--wc[x[i]]]=i;
for(j=,p=;p<n;j*=,m=p){
for(p=,i=n-j;i<n;i++) y[p++]=i;
for(i=;i<n;i++) if(sa[i]>=j) y[p++]=sa[i]-j;
for(i=;i<n;i++) wv[i]=x[y[i]];
for(i=;i<m;i++) wc[i]=;
for(i=;i<n;i++) wc[wv[i]]++;
for(i=;i<m;i++) wc[i]+=wc[i-];
for(i=n-;i>=;i--) sa[--wc[wv[i]]]=y[i];
for(swap(x,y),p=,x[sa[]]=,i=;i<n;i++) x[sa[i]]=cmp(y,sa[i-],sa[i],j)?p-:p++;
}
return;
}
int rank1[N],height[N],sa[N];
void make_height(int *r,int *sa,int n){
int i,j,k=;
for(i=;i<=n;i++) rank1[sa[i]]=i;
for(i=;i<n;height[rank1[i++]]=k)
for(k?k--:,j=sa[rank1[i]-];r[i+k]==r[j+k];k++);
return;
} int n,k,r[N];
int main(){
int t;
ios::sync_with_stdio();
cin>>t;
while(t--){
string s;
cin>>s;
for(int i=;i<s.size();i++) r[i]=(int)s[i];
r[s.size()]=;
n=s.size();
make_sa(r,sa,n+,);
make_height(r,sa,n);
int sum=;
for(int i=;i<=n;i++){
sum+=n-sa[i]-height[i];
}
cout<<sum<<"\n";
}
return ;
}
另:整理下DC3模板(r和sa
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#define inf 0x3f3f3f3f
typedef long long ll;
using namespace std;
const int N=;
#define F(x) ((x)/3+((x)%3==1?0:tb))
#define G(x) ((x)<tb?(x)*3+1:((x)-tb)*3+2)
int wa[N],wb[N],wv[N],ws1[N];
int c0(int *r,int a,int b){ return r[a]==r[b]&&r[a+]==r[b+]&&r[a+]==r[b+]; }
int c12(int k,int *r,int a,int b){
if(k==) return r[a]<r[b]||r[a]==r[b]&&c12(,r,a+,b+);
else return r[a]<r[b]||r[a]==r[b]&&wv[a+]<wv[b+];
}
void sort(int *r,int *a,int *b,int n,int m){
int i;
for(i=;i<n;i++) wv[i]=r[a[i]];
for(i=;i<m;i++) ws1[i]=;
for(i=;i<n;i++) ws1[wv[i]]++;
for(i=;i<m;i++) ws1[i]+=ws1[i-];
for(i=n-;i>=;i--) b[--ws1[wv[i]]]=a[i];
return;
}
void dc3(int *r,int *sa,int n,int m){
int i,j,*rn=r+n,*san=sa+n,ta=,tb=(n+)/,tbc=,p;
r[n]=r[n+]=;
for(i=;i<n;i++) if(i%!=) wa[tbc++]=i;
sort(r+,wa,wb,tbc,m);
sort(r+,wb,wa,tbc,m);
sort(r,wa,wb,tbc,m);
for(p=,rn[F(wb[])]=,i=;i<tbc;i++)
rn[F(wb[i])]=c0(r,wb[i-],wb[i])?p-:p++;
if(p<tbc) dc3(rn,san,tbc,p);
else for(i=;i<tbc;i++) san[rn[i]]=i;
for(i=;i<tbc;i++) if(san[i]<tb) wb[ta++]=san[i]*;
if(n%==) wb[ta++]=n-;
sort(r,wb,wa,ta,m);
for(i=;i<tbc;i++) wv[wb[i]=G(san[i])]=i;
for(i=,j=,p=;i<ta && j<tbc;p++)
sa[p]=c12(wb[j]%,r,wa[i],wb[j])?wa[i++]:wb[j++];
for(;i<ta;p++) sa[p]=wa[i++];
for(;j<tbc;p++) sa[p]=wb[j++];
return;
}
int rank1[N],height[N],sa[*N];
void make_height(int *r,int *sa,int n){
int i,j,k=;
for(i=;i<=n;i++) rank1[sa[i]]=i;
for(i=;i<n;height[rank1[i++]]=k)
for(k?k--:,j=sa[rank1[i]-];r[i+k]==r[j+k];k++);
return;
} int n,k,r[*N];
int main(){
int t;
ios::sync_with_stdio();
cin>>t;
while(t--){
string s;
cin>>s;
for(int i=;i<s.size();i++) r[i]=(int)s[i];
r[s.size()]=;
n=s.size();
dc3(r,sa,n+,);
make_height(r,sa,n);
int sum=;
for(int i=;i<=n;i++){
sum+=n-sa[i]-height[i];
}
cout<<sum<<"\n";
}
return ;
}
必须开到3倍大小)
[spoj694&spoj705]New Distinct Substrings(后缀数组)的更多相关文章
- SPOJ - SUBST1 New Distinct Substrings —— 后缀数组 单个字符串的子串个数
题目链接:https://vjudge.net/problem/SPOJ-SUBST1 SUBST1 - New Distinct Substrings #suffix-array-8 Given a ...
- SPOJ - DISUBSTR Distinct Substrings (后缀数组)
Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...
- 【SPOJ – SUBST1】New Distinct Substrings 后缀数组
New Distinct Substrings 题意 给出T个字符串,问每个字符串有多少个不同的子串. 思路 字符串所有子串,可以看做由所有后缀的前缀组成. 按照后缀排序,遍历后缀,每次新增的前缀就是 ...
- SPOJ DISUBSTR Distinct Substrings 后缀数组
题意:统计母串中包含多少不同的子串 然后这是09年论文<后缀数组——处理字符串的有力工具>中有介绍 公式如下: 原理就是加上新的,减去重的,这题是因为打多校才补的,只能说我是个垃圾 #in ...
- SPOJ 694 || 705 Distinct Substrings ( 后缀数组 && 不同子串的个数 )
题意 : 对于给出的串,输出其不同长度的子串的种类数 分析 : 有一个事实就是每一个子串必定是某一个后缀的前缀,换句话说就是每一个后缀的的每一个前缀都代表着一个子串,那么如何在这么多子串or后缀的前缀 ...
- spoj Distinct Substrings 后缀数组
给定一个字符串,求不相同的子串的个数. 假如给字符串“ABA";排列的子串可能: A B A AB BA ABA 共3*(3+1)/2=6种; 后缀数组表示时: A ABA BA 对于A和 ...
- spoj 694. Distinct Substrings 后缀数组求不同子串的个数
题目链接:http://www.spoj.com/problems/DISUBSTR/ 思路: 每个子串一定是某个后缀的前缀,那么原问题等价于求所有后缀之间的不相同的前缀的个数.如果所有的后缀按照su ...
- SPOJ_705_New Distinct Substrings_后缀数组
SPOJ_705_New Distinct Substrings_后缀数组 题意: 给定一个字符串,求该字符串含有的本质不同的子串数量. 后缀数组的一个小应用. 考虑每个后缀的贡献,如果不要求本质不同 ...
- Cogs 1709. [SPOJ705]不同的子串 后缀数组
题目:http://cojs.tk/cogs/problem/problem.php?pid=1709 1709. [SPOJ705]不同的子串 ★★ 输入文件:subst1.in 输出文件: ...
随机推荐
- 通过srvctl add命令添加database信息到srvctl管理器
================================================通过srvctl add命令添加database信息到srvctl管理器================ ...
- Git --恢复修改的文件
对于恢复修改的文件,就是将文件从仓库中拉到本地工作区,即 仓库区 ----> 暂存区 ----> 工作区. 对于修改的文件有两种情况: 只是修改了文件,没有任何 git 操作 修改了文件, ...
- 矩阵十题【六】 poj3070 Fibonacci
题目链接:http://poj.org/problem? id=3070 题目大意:给定n和10000,求第n个Fibonacci数mod 10000 的值,n不超过2^31. 结果保留四位数字. 非 ...
- c# combobox 绑定枚举方式
建立一个类 : using System; using System.Collections.Generic; using System.Linq; using System.Text; using ...
- linux安装mongodb,设为全局和后台启动
curl -O https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-3.6.5.tgz # 下载 tar -zxvf mongodb-linux ...
- 初学OpenMP
这两天在看多核计算的书,就要用到openmp,因为我使用vs2015,从微软可以看到是支持openmp2.0版本的 具体使用: 在vs里创造一个控制台项目,然后打开属性管理器,在属性管理器里找到配置属 ...
- HDU2825 Wireless Password —— AC自动机 + 状压DP
题目链接:https://vjudge.net/problem/HDU-2825 Wireless Password Time Limit: 2000/1000 MS (Java/Others) ...
- 算法(Algorithms)第4版 练习 1.3.27 1.3.28
代码实现: //1.3.27 /** * return the value of the maximum key in the list * * @param list the linked list ...
- 对于glut和freeglut的一点比较和在VS2013上的配置问题
先大概说一下glut.h和freeglut.h 首先要知道openGL是只提供绘图,不管窗口的,所以你需要给它一个绘图的区域(openGL能跨平台也与此有些关系) glut.h和freeglut.h都 ...
- Centos 6.3 编译安装Nginx+php+Mysql
1.配置防火墙,开启80端口.3306端口 vi /etc/sysconfig/iptables 将 -A INPUT -m state --state NEW -m tcp -p tcp --dpo ...