题目链接:

How Many Triangles

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 570    Accepted Submission(s): 183

Problem Description
Alice has n points in two-dimensional plane. She wants to know how many different acute triangles they can form. Two triangles are considered different if they differ in at least one point.
 
Input
The input contains multiple test cases.
For each test case, begin with an integer n,
next n lines each contains two integers xi and yi.
3≤n≤2000
0≤xi,yi≤1e9
Any two points will not coincide.
 
Output
For each test case output a line contains an integer.
 
Sample Input
 
3
1 1
2 2
2 3
3
1 1
2 3
3 2
4
1 1
3 1
4 1
2 3
 
Sample Output
 
0
1
2
 
题意:
 
问有多少个锐角三角形,跟以前的求钝角和直角三角形一样,要用极角排序,不过这道题的点有共线的,所以要结合一下三角形的知识,其实就是锐角三角形三个锐角,直角和钝角三角形有两个锐角,求出锐角的个数,钝角和直角的个数,然后锐角个数减去两倍的直角钝角个数,再除3就是答案了,极角排序的问题就是精度问题了;精度ep开的小一点啦就能过啦;
 
思路:
 
哎哟,上边一不小心就说了;
 
AC代码;
 
/************************************************
┆ ┏┓   ┏┓ ┆
┆┏┛┻━━━┛┻┓ ┆
┆┃       ┃ ┆
┆┃   ━   ┃ ┆
┆┃ ┳┛ ┗┳ ┃ ┆
┆┃       ┃ ┆
┆┃   ┻   ┃ ┆
┆┗━┓   ┏━┛ ┆
┆  ┃   ┃  ┆      
┆  ┃   ┗━━━┓ ┆
┆  ┃  AC代马   ┣┓┆
┆  ┃    ┏┛┆
┆  ┗┓┓┏━┳┓┏┛ ┆
┆   ┃┫┫ ┃┫┫ ┆
┆   ┗┻┛ ┗┻┛ ┆
************************************************ */ #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <bits/stdc++.h>
#include <stack> using namespace std; #define For(i,j,n) for(int i=j;i<=n;i++)
#define mst(ss,b) memset(ss,b,sizeof(ss)); typedef long long LL; template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p) {
if(!p) { puts("0"); return; }
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + '0');
putchar('\n');
} const LL mod=1e9+7;
const double PI=acos(-1.0);
const int inf=1e9;
const int N=5e4+10;
const int maxn=2e3+14;
const double eps=1e-12; double temp[2*maxn];
int n;
struct node
{
double x,y;
}po[maxn]; int main()
{
while(scanf("%d",&n)!=EOF)
{
For(i,1,n)
{
scanf("%lf%lf",&po[i].x,&po[i].y);
}
LL ans1=0,ans2=0;
For(i,1,n)
{
int cnt=0;
For(j,1,n)
{
if(i==j)continue;
temp[++cnt]=atan2(po[j].y-po[i].y,po[j].x-po[i].x);
if(temp[cnt]<0)temp[cnt]+=2*PI;
}
sort(temp+1,temp+cnt+1);
For(j,1,cnt)
{
temp[j+cnt]=temp[j]+2*PI;
}
int l=1,r=1,le=1;
For(j,1,cnt)
{
while(temp[r]-temp[j]<PI&&r<=2*cnt)r++;
while(temp[l]-temp[j]<0.5*PI&&l<=2*cnt)l++;
while(temp[le]-temp[j]<=eps&&le<=2*cnt)le++;
ans1=ans1+r-l;
ans2=ans2+l-le;
}
}
cout<<(ans2-2*ans1)/3<<"\n";
}
return 0;
}

  

hdu-5784 How Many Triangles(计算几何+极角排序)的更多相关文章

  1. hdu 5784 How Many Triangles 计算几何,平面有多少个锐角三角形

    How Many Triangles 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5784 Description Alice has n poin ...

  2. HDU 5784 How Many Triangles

    计算几何,极角排序,双指针,二分. 直接找锐角三角形的个数不好找,可以通过反面来求解. 首先,$n$个点最多能组成三角形个数有$C_n^3$个,但是这之中还包括了直角三角形,钝角三角形,平角三角形,我 ...

  3. HDU 6538 Neko and quadrilateral(极角排序+旋转坐标系)

    这道题简直太好了,对于计算几何选手需要掌握的一个方法. 首先对于求解四边形面积,我们可以将四边形按对角线划分成两个三角形,显然此时四边形的面积最大最小值就变成了求解里这个对角线最近最远的点对. 对于此 ...

  4. bzoj 5099 [POI2018]Pionek 计算几何 极角排序

    [POI2018]Pionek Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 269  Solved: 80[Submit][Status][Disc ...

  5. 【计算几何+极角排序+爆ll】E. Convex

    https://www.bnuoj.com/v3/contest_show.php?cid=9147#problem/E [题意] 给定n个点的坐标,可以选择其中的四个点构造凸四边形,问最多能构造多少 ...

  6. 【计算几何】【极角排序】【二分】Petrozavodsk Summer Training Camp 2016 Day 6: Warsaw U Contest, XVI Open Cup Onsite, Sunday, August 28, 2016 Problem J. Triangles

    平面上给你n(不超过2000)个点,问你能构成多少个面积在[A,B]之间的Rt三角形. 枚举每个点作为直角顶点,对其他点极角排序,同方向的按长度排序,然后依次枚举每个向量,与其对应的另一条直角边是单调 ...

  7. HDU 5784 (计算几何)

    Problem How Many Triangles (HDU 5784) 题目大意 给定平面上的n个点(n<2000),询问可以组成多少个锐角三角形. 解题分析 直接统计锐角三角形较困难,考虑 ...

  8. HDU 5738 Eureka(极角排序)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5738 [题目大意] 给出平面中一些点,在同一直线的点可以划分为一个集合,问可以组成多少包含元素不少 ...

  9. hrbustoj 1305:多边形(计算几何,极角排序练习)

    多边形 Time Limit: 1000 MS     Memory Limit: 65536 K Total Submit: 113(42 users)   Total Accepted: 51(3 ...

随机推荐

  1. 在Ubuntu 14.04 64bit中永久添加DNS的方法

    DNS信息是由/etc/resolv.conf提供的,它是每次开机时,由/sbin/resolvconf生成的/etc/resolv.conf是/run/resolvconf/resolv.conf的 ...

  2. 【转载】aspx,ascx和ashx使用小结

    做asp.net开发的对.aspx,.ascx和.ashx都不会陌生.关于它们,网上有很多文章介绍."纸上得来终觉浅,绝知此事要躬行",下面自己总结一下做个笔记.1..aspxWe ...

  3. Command &Prompt Here

    Windows Registry Editor Version 5.00 [HKEY_CLASSES_ROOT\Directory\shell\Command Prompt Here]@=" ...

  4. 设计模式 - 代理模式(proxy pattern) 未使用代理模式 具体解释

    代理模式(proxy pattern) 未使用代理模式 详细解释 本文地址: http://blog.csdn.net/caroline_wendy 部分代码參考: http://blog.csdn. ...

  5. HBase 系统架构及数据结构

    一.基本概念     2.1 Row Key (行键)     2.2 Column Family(列族)     2.3 Column Qualifier (列限定符)     2.4 Column ...

  6. 使用HTML5制作简单的RPG游戏

    很久以前就想着做一个游戏,但什么都不会又不知道从哪里开始,胡乱找来一些书籍和资料结果太深奥看不懂,无奈只能放弃.这一弃就是十多年,倥偬半生,眼看垂垂老矣,还是没能有什么成果. 近年来游戏引擎越来越多, ...

  7. Verilog代码规范(持续更新)

    1.输入输出的定义,看起来整齐 2.always.if或其他语句后begin写在同一行,这样可以避免begin占用过多的行,代码密度更大 3.end后面要有注释,以标明是哪个关键词的结束,除了endc ...

  8. easyUI中 datagrid 格式化日期

    $('#List').datagrid({ url: '@Url.Action("GetList")', width:SetGridWidthSub(10), methord: ' ...

  9. mac sublime text 3 add ctags plugin

    https://www.smslit.top/2015/11/14/macSTctags-Develop/ ctags插件for sublime text项目和ctags源码项目都在github上.

  10. 【足迹C++primer】35、特定容器算法

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/cutter_point/article/details/33732681 特定容器算法 lst.me ...