「BZOJ2721」「LuoguP1445」 [Violet]樱花(数论
题目背景
我很愤怒
题目描述
求方程 $\frac{1}{x}+\frac{1}{y}=\frac{1}{N!}$ 的正整数解的组数,其中$N≤10^6$。
解的组数,应模$1e9+7$。
输入输出格式
输入格式:
输入一个整数N
输出格式:
输出答案
输入输出样例
题解
看到原题面的我也很愤怒。
显然是道数论题,所以我们要去分析它的性质。
$\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}$
$\frac{x+y}{x*y}=\frac{1}{n!}$
$xy-(x+y)*(n!)=0$
$(n!)^2+xy-(x+y)*n!=(n!)^2$
$(x-n!)*(y-n!)=(n!)^2$
设$t=(n!)$
$(x-t)*(y-t)=t^2$
∵$x,y$是正整数,∴$x-t>0$且$y-t>0$
(若要小于0,则$(x-t)$和$(y-t)$中至少要有一个小于$-t$,也就是$x<0$或$y<0$,与题设不符
设$A=(x-t)$,$B=(y-t)$
则有$A*B=t^2=(n!)^2$
所以$A$的方案数就是$(n!)^2$的因子数,也就是一些质因子乘起来的结果。
所以把$(n!)^2$分解质因数,设为$(n!)^2={a_1}^{p_1}*{a_2}^{p_2}...*{a_m}^{p_m}$
则答案为$(p_1+1)*(p_2+1)*...*(p_m+1)$。
qwerta
P1445 [Violet]樱花 Accepted 代码 C++,.54KB
提交时间 -- ::
耗时/内存 86ms, 2692KB
#include<iostream>
#include<cstdio>
using namespace std;
bool sf[];
int p[];
int main()
{
int n;
scanf("%d",&n);
int tos=;
for(int i=;i<=n;++i)
if(!sf[i])
{
p[++tos]=;//因为是(n!)的平方,所以次数+=2
for(int j=;i*j<=n;++j)
{
int x=i*j;
sf[x]=;
while(x%i==)
{
p[tos]+=;
x/=i;
}
}
}
/*
for(int i=2;i<=n;++i)
{
int x=i;
for(int j=1;j<=tos&&x>1;++j)
{
while(x%st[j]==0)
{
p[j]+=2;
x/=st[j];
}
}
}
*/注释掉的是暴力分解2~n的质因数,亲测T上天
long long ans=,mod=1e9+;
for(int i=;i<=tos;++i)
ans=(ans*(p[i]+))%mod;//统计答案
cout<<ans;
return ;
}
「BZOJ2721」「LuoguP1445」 [Violet]樱花(数论的更多相关文章
- Luogu1445 [Violet]樱花 ---- 数论优化
Luogu1445 [Violet]樱花 一句话题意:(本来就是一句话的) 求方程 $\frac{1}{X} + \frac{1}{Y} = \frac{1}{N!}$ 的正整数解的组数,其中$N \ ...
- BZOJ2721或洛谷1445 [Violet]樱花
BZOJ原题链接 洛谷原题链接 其实推导很简单,只不过我太菜了想不到...又双叒叕去看题解 简单写下推导过程. 原方程:\[\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1 ...
- 众安「尊享e生」果真牛的不可一世么?
近日,具有互联网基因的.亏损大户(成立三年基本没盈利,今年二季度末亏损近4亿,你能指望它多厉害?).财产险公司—众安推出“尊享e生”中高端医疗保险(财险公司经营中高端医疗真的很厉害?真的是中高端医疗险 ...
- XCActionBar 「Xcode 中的 Alfred」
下载地址:https://github.com/pdcgomes/XCActionBar 基本命令: (1)「command+shift+8」或者双击「command」键可以打开「动作输入框窗口」 ( ...
- Git 执行 「fork 出来的仓库」和「最新版本的原仓库」内容同步更新
当我们在 GitHub 上 fork 出一个仓库后,如果原仓库更新了,此时怎样才能保证我们 fork 出来的仓库和原仓库内容一致呢?我们一般关注的是仓库的 master(主干分支)的内容,通过以下步骤 ...
- 【翻译】西川善司的「实验做出的游戏图形」「GUILTY GEAR Xrd -SIGN-」中实现的「纯卡通动画的实时3D图形」的秘密,后篇
http://www.4gamer.net/games/216/G021678/20140714079/ 连载第2回的本回, Arc System Works开发的格斗游戏「GUILTY G ...
- 翻译「C++ Rvalue References Explained」C++右值引用详解 Part1:概述
本文系对「C++ Rvalue References Explained」 该文的翻译,原文作者:Thomas Becker. 该文较详细的解释了C++11右值引用的作用和出现的意义,也同时被Scot ...
- 「Windows MFC 」「Edit Control」 控件
「Windows MFC 」「Edit Control」 控件
- 苹果搜索广告后台大揭秘,最全最细致详解,手把手设置教程「后附官方视频」-b
WWDC2016 搜索广告分会视频和 PPT 发布了,ASO100 带开发者第一时间了解 Search Ads 后台设置(文末有原声视频). 首先介绍一下搜索广告的模式和竞价规则 广告模式为 CPT( ...
随机推荐
- win10多用户远程登录
实现效果:不同的电脑可以同时登录一台windows主机,但是必须使用不同的账号 首先,我们来创建一个新用户 点击设置,搜索用户 点击下一步,一个普通用户就创建完成了. 然后,打开远程设置,右键此电脑, ...
- request 获取请求头
/********************************************************servlet页面********************************** ...
- [转]浅谈Flash Socket通信安全沙箱
用过Flash socket的同学都知道,Flash socket通讯有安全沙箱问题.就是在Flash Player发起socket通信时,会向服务端获取安全策略,如果得不到服务端响应,flash将无 ...
- C#高级编程 第十五章 反射
(二)自定义特性 使自定义特性非常强大的因素时使用反射,代码可以读取这些元数据,使用它们在运行期间作出决策. 1.编写自定义特性 定义一个FieldName特性: [AttributeUsage(At ...
- IOS - unity3d错误Could not produce class with ID
运行环境 Unity 5.3.5f1 (IL2CPP)编译IOS版本 XCode Version 7.2.1 (7C1002) Mac OS X 10.11.3 (15D21) (Mac mini) ...
- Python中urllib2总结
使用Python访问网页主要有三种方式: urllib, urllib2, httpliburllib比较简单,功能相对也比较弱,httplib简单强大,但好像不支持session1. 最简单的页面访 ...
- python 基础 8.5 re 的match对象
#/usr/bin/python #coding=utf-8 #@Time :2017/11/18 21:49 #@Auther :liuzhenchuan #@File :match对象.p ...
- Python 字符串操作(截取/替换/查找/分割)
Python 截取字符串使用 变量[头下标:尾下标],就可以截取相应的字符串,其中下标是从0开始算起,可以是正数或负数,下标可以为空表示取到头或尾. # 例1:字符串截取 str = '1234567 ...
- gitPermission denied (publickey).
$ git clone git@github.com:DavidWanderer/test1.git Cloning into 'test1'... Warning: Permanently adde ...
- CUDA:纹理内存
纹理内存: 与常量内存类似,纹理内存是另一种形式的只读内存,并且同样缓存在芯片上.因此某些情况下能够减少对内存的请求并提供高效的内存带宽.纹理内存是专门为那些在内存访问模式中存在大量空间局部性的图形应 ...