HDU 2829 斜率优化DP Lawrence
题意:n个数之间放m个障碍,分隔成m+1段。对于每段两两数相乘再求和,然后把这m+1个值加起来,让这个值最小。
设:
d(i, j)表示前i个数之间放j个炸弹能得到的最小值
sum(i)为前缀和,cost(i)为前i个数两两相乘之和。
则有状态转移方程:
设0 ≤ l < k < i,且k比l更优,有不等式:
整理得到,注意不等号方向:
最后变成了斜率的形式,下面就用一个队列维护即可。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int maxn = + ; int n, m; int sum[maxn], cost[maxn];
int d[maxn][maxn]; int head, tail;
int Q[maxn]; int j; int inline Y(int i)
{
return d[i][j-] + sum[i] * sum[i] - cost[i];
} int inline DY(int x1, int x2) { return Y(x2) - Y(x1); } int inline DX(int x1, int x2) { return sum[x2] - sum[x1]; } int inline DP(int x1, int x2) { return d[x1][j-] + cost[x2] - cost[x1] - sum[x1]*(sum[x2]-sum[x1]); } int main()
{
while(scanf("%d%d", &n, &m) == && n)
{
for(int i = ; i <= n; i++) scanf("%d", sum + i);
for(int i = ; i <= n; i++) sum[i] += sum[i - ];
for(int i = ; i <= n; i++) cost[i] = cost[i-] + (sum[i]-sum[i-])*sum[i-]; for(int i = ; i <= n; i++) d[i][] = cost[i];
for(j = ; j <= m; j++)
{
head = tail = ;
Q[tail++] = ;
for(int i = ; i <= n; i++)
{
while(head + < tail && DY(Q[head], Q[head+]) <= sum[i] * DX(Q[head], Q[head+])) head++;
d[i][j] = DP(Q[head], i);
while(head + < tail && DY(Q[tail-], i) * DX(Q[tail-], Q[tail-]) <= DY(Q[tail-], Q[tail-]) * DX(Q[tail-], i)) tail--;
Q[tail++] = i;
}
} printf("%d\n", d[n][m]);
} return ;
}
代码君
贴一个四边形不等式优化的代码对比一下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int maxn = + ;
const int INF = 0x3f3f3f3f; int n, m;
int a[maxn], sum[maxn], cost[maxn];
int d[maxn][maxn], s[maxn][maxn]; int inline w(int k, int j)
{
return cost[j] - cost[k-] - sum[k-] * (sum[j] - sum[k-]);
} int main()
{
while(scanf("%d%d", &n, &m) == && n)
{
m++; for(int i = ; i <= n; i++) scanf("%d", a + i);
for(int i = ; i <= n; i++) sum[i] = sum[i - ] + a[i];
for(int i = ; i <= n; i++) cost[i] = cost[i-] + sum[i-] * a[i]; memset(d, , sizeof(d));
for(int i = ; i <= m; i++)
for(int j = i + ; j <= n; j++) d[i][j] = INF; for(int i = ; i <= n; i++) { d[][i] = cost[i]; s[][i] = ; }
for(int i = ; i <= m; i++)
{
s[i][n+] = n;
for(int j = n; j >= i; j--)
{
for(int k = s[i-][j]; k <= s[i][j+]; k++)
{
int tmp = d[i-][k] + w(k+, j);
if(tmp < d[i][j])
{ d[i][j] = tmp; s[i][j] = k; }
}
}
} printf("%d\n", d[m][n]);
} return ;
}
代码君
HDU 2829 斜率优化DP Lawrence的更多相关文章
- hdu 3669(斜率优化DP)
Cross the Wall Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 327680/327680 K (Java/Others) ...
- HDU 4258 斜率优化dp
Covered Walkway Time Limit: 30000/10000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Othe ...
- hdu 3045 斜率优化DP
思路:dp[i]=dp[j]+sum[i]-sum[j]-(i-j)*num[j+1]; 然后就是比较斜率. 注意的时这里j+t<=i: #include<iostream> #in ...
- Print Article HDU - 3507 -斜率优化DP
思路 : 1,用一个单调队列来维护解集. 2,假设队列中从头到尾已经有元素a b c.那么当d要入队的时候,我们维护队列的下凸性质, 即如果g[d,c]<g[c,b],那么就将c点删除.直到找到 ...
- HDU 3507 斜率优化dp
Print Article Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)To ...
- HDU 3507斜率优化dp
Print Article Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)To ...
- HDU 3507 斜率优化 DP Print Article
在kuangbin巨巨博客上学的. #include <iostream> #include <cstdio> #include <cstring> #includ ...
- hdu 2829 Lawrence(斜率优化DP)
题目链接:hdu 2829 Lawrence 题意: 在一条直线型的铁路上,每个站点有各自的权重num[i],每一段铁路(边)的权重(题目上说是战略价值什么的好像)是能经过这条边的所有站点的乘积之和. ...
- HDU 2829 Lawrence (斜率优化DP或四边形不等式优化DP)
题意:给定 n 个数,要你将其分成m + 1组,要求每组数必须是连续的而且要求得到的价值最小.一组数的价值定义为该组内任意两个数乘积之和,如果某组中仅有一个数,那么该组数的价值为0. 析:DP状态方程 ...
随机推荐
- CentOS Linux 搭建 SVN(CollabNet Subversion)服务器
安装CollabNet Subversion之前必须先安装JDK1.6和python2.4 ~ 2.6 groupadd svn useradd -g svn svnuser passwd svnu ...
- 在b站做计网实验 - 抓包/get/post
前言 这篇博文是一个小实验,用python发送get/post请求,其中用到cookie登录bilibili网站并修改个人信息. 抓包 对HTTP应用而言,用浏览器自带的插件可以很方便做到抓包,比如c ...
- 生产环境中mysql+keepalive双主模式,keepalive守护进程实现双主切换提供数据库服务
mysql+keepalive实现浮动地址自动切换,由于keepalive无自带健康检查功能,所以必须自动编写健康检查守护进程(监控DB1和DB2数据库的监控状态,来保证浮动地址双机自动切换.) 一, ...
- 别让CDN的回源把你的服务器拖垮,采用正确的回源策略
我们有一台服务器提供的服务主要是以动态页面为主,静态页面都是固定的内容平时更新的很少,最近这台服务器的应用升级到了新版本访问量增大了不少,随之的问题就来了,最近每天一到9点负载就超过警戒值,然后负载持 ...
- ps 进程管理
一. 进程管理 1. pstree 2. ps 3. top 4. nice 5. free 6. screen 二. 程序与进程 程序是静态的文件,进程是动态运行的程序. 三. 进程和线程 一个程序 ...
- Eclipse优化工具Optimizer for Eclipse
第一次看到是Optimizer for Eclipse是在InfoQ 然后使用了一下,发现不错啊,我的好几年的破本都能比较快的启动Eclipse了 好了,废话不说了,来介绍一下Optimizer fo ...
- Eclipse介绍
Eclipse是著名的跨平台开源集成开发环境(IDE).最初主要用来Java语言开发.Eclipse的本身只是一个框架平台,通过插件使其作为C/C++.Python.PHP等其他语言的开发工具.Ecl ...
- Selenium私房菜系列7 -- 玩转Selenium Server
本篇主要是想更进一步介绍Selenium Server的工作原理,这次我们从Selenium Server的交互模式开始. 在<第一个Selenium RC测试案例>中,我们以命令“jav ...
- C# 一维数组 冒泡排序
假设有个三个杯子 一个杯子中有一个紫色的乒乓球 一个没有 一个有红色乒乓球 杯子不能动 怎么把紫色和红色的调换呢 主要是先把紫色的放到空的杯子 在把红的放到紫色原来的杯子 再把 ...
- Mysql 主备配置
来自:http://blog.csdn.net/u013256816/article/details/52536283 1. 了解主备配置过程原理. http://blog.csdn.net/u013 ...