5272: 逆矩阵 

Time Limit(Common/Java):1000MS/3000MS     Memory Limit:65536KByte
Total Submit: 11            Accepted:7

Description

设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩阵B,使得:AB=BA=E(单位矩阵)。 则我们称B是A的逆矩阵,而A则被称为可逆矩阵。

现在告诉你一个n阶方阵A,求它的逆矩阵B。

Input

输入数据有多组,第一行为数据组数T,接下来有T个矩阵。

每个矩阵的第一行为n(n<20),表示n阶方阵,接下来的n行n列表示n*n的矩阵

矩阵元素为实数。

Output

按照n行n列输出逆矩阵B,所有元素保留2位小数。数据保证一定有逆矩阵。

Sample Input

1
5
1.3 0.8 0.5 0.8 1.0
0.5 0.6 1.0 1.3 1.0
0.8 1.4 0.9 1.1 1.4
1.0 0.6 0.8 1.4 0.5
0.7 0.6 1.4 1.4 1.2

Sample Output

0.86 -1.37 -0.36 0.37 0.69
-1.10 -1.90 1.71 0.93 0.12
-1.08 -4.01 0.72 0.64 3.14
0.01 3.06 -0.61 0.33 -1.99
1.29 2.85 -0.77 -1.81 -0.97

Source

矩阵的逆,我提供了两种方法。

LU分解

#include<stdio.h>
const int N=;
double a[N][N],b[N][N],c[N][N],bt[N][N],ct[N][N],ans[N][N];
int T,n;
void LU()
{
for(int i=; i<n; i++)
for(int j=; j<n; j++)b[i][j]=c[i][j]=bt[i][j]=ct[i][j]=ans[i][j]=;
for(int i=; i<n; i++)b[i][i]=bt[i][i]=;
double s;
for(int i=; i<n; i++)
{
for(int j=i; j<n; j++)
{
s=;
for(int k=; k<i; k++)
s+=b[i][k]*c[k][j];
c[i][j]=a[i][j]-s;
}
for(int j=i+; j<n; j++)
{
s=;
for(int k=; k<i; k++)
s+=b[j][k]*c[k][i];
b[j][i]=(a[j][i]-s)/c[i][i];
}
}
for(int i=; i<n; i++)
for(int j=; j<i; j++)
{
s=;
for(int k=; k<i; k++)
s+=b[i][k]*bt[k][j];
bt[i][j]=-s;
}
for(int i=; i<n; i++)
ct[i][i]=/c[i][i];
for(int i=; i<n; i++)
for(int j=i-; j>=; j--)
{
s=;
for(int k=j+; k<=i; k++)
s+=c[j][k]*ct[k][i];
ct[j][i]=-s/c[j][j];
}
for(int i=; i<n; i++)
for(int j=; j<n; j++)
for(int k=; k<n; k++)
ans[i][j]+=ct[i][k]*bt[k][j];
for(int i=; i<n; i++)
for(int j=; j<n; j++)printf("%.2f%c",ans[i][j],j==n-?'\n':' ');
}
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=; i<n; i++)
for(int j=; j<n; j++)
scanf("%lf",&a[i][j]);
LU();
}
return ;
}

Gauss 消元

#include<stdio.h>
#include<math.h>
#include<algorithm>
const double eps=1e-;
const int N=;
double a[N][N],b[N],x[N],s,t[N][N],ans[N][N];
int n;
void gauss()
{
int i;
for(int k=; k<=n; k++)
{
for(i=k; i<=n&&fabs(a[i][k])<eps; i++);
if(i!=k)
{
for(int j=k; j<=n; j++)std::swap(a[i][j],a[k][j]);
std::swap(b[i],b[k]);
}
for(i=k+; i<=n; i++)
{
s=a[i][k]/a[k][k];
for(int j=k; j<=n; j++)a[i][j]-=a[k][j]*s;
b[i]-=b[k]*s;
}
}
for(i=n; i>=; --i)
{
s=b[i];
for(int j=i+; j<=n; j++)s-=x[j]*a[i][j];
x[i]=s/a[i][i];
if(fabs(x[i])<eps)x[i]=;
}
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=; i<=n; i++)
{
for(int j=; j<=n; j++)
scanf("%lf",&t[i][j]),a[i][j]=t[i][j];
b[i]=;
}
for(int k=; k<=n; k++)
{
for(int i=; i<=n; i++)
{
for(int j=; j<=n; j++)a[i][j]=t[i][j];
b[i]=;
}
b[k]=;
gauss();
for(int i=; i<=n; i++)ans[i][k]=x[i];
}
for(int i=; i<=n; i++)
for(int j=; j<=n; j++)printf("%.2f%c",ans[i][j],j==n?'\n':' ');
}
return ;
}

TOJ5272: 逆矩阵的更多相关文章

  1. c++实现矩阵类矩阵行列式,伴随矩阵,逆矩阵

    //Matrix ver1.0 //只支持矩阵内部(方阵)的运算 #include<iostream> #include<math.h> using namespace std ...

  2. BZOJ 3640 JC的小苹果(逆矩阵)

    题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3640 题意:给出一个无向图,从1走到n.开始是血量H,从u到达v时血量减少a[v] ...

  3. 《Linear Algebra and Its Applications》-chaper3-行列式-从一个逆矩阵算法证明引入的行列式

    这一章节开始介绍线性代数中另外一个基本概念——行列式. 其实与矩阵类似,行列式也是作为简化表述多项式的一种工具,关于行列式的历史渊源,有如下的介绍. 在介绍逆矩阵的时候,我们曾提及二阶矩阵有一个基于矩 ...

  4. 学习笔记DL004:标量、向量、矩阵、张量,矩阵、向量相乘,单位矩阵、逆矩阵

    线性代数,面向连续数学,非离散数学.<The Matrix Cookbook>,Petersen and Pedersen,2006.Shilov(1977). 标量.向量.矩阵.张量. ...

  5. 浅谈范德蒙德(Vandermonde)方阵的逆矩阵的求法以及快速傅里叶变换(FFT)中IDFT的原理

    浅谈范德蒙德(Vandermonde)方阵的逆矩阵与拉格朗日(Lagrange)插值的关系以及快速傅里叶变换(FFT)中IDFT的原理 标签: 行列式 矩阵 线性代数 FFT 拉格朗日插值 只要稍微看 ...

  6. 使用cv::invert()求解Mat矩阵的逆矩阵

    opencv中cv::invert()可直接用来求解矩阵的逆矩阵 函数原型如下: double cv::invert(InputArray  src, OutputArray dst, int  fl ...

  7. matlab中求逆矩阵的高斯消元法实现的代码

    function qiuni =INV_GET(a)N=length(a);M=eye(N);%得到上三角矩?for i=1:N max=a(i,i); A=i; for j=i+1:N if(abs ...

  8. 求伪逆矩阵c++代码(Eigen库)

    非方阵的矩阵的逆矩阵  pseudoInverse 伪逆矩阵是逆矩阵的广义形式,广义逆矩阵 matlab中是pinv(A)-->inv(A). #include "stdafx.h&q ...

  9. 使用lapack图书馆逆矩阵

    阿土,直接在代码: #include <string> #include "lapacke.h" #include "lapack_aux.h" i ...

随机推荐

  1. IDA逆向:数组的逆向

    阅读<IDA Pro权威指南>第八章,整理的一些笔记,作为逆向的基础,可能有很多认识不足. //全局分配数组 *************************************** ...

  2. UVA 11600 Masud Rana(概率dp)

    当两个城市之间有安全的道路的时候,他们是互相可到达的,这种关系满足自反.对称和传递性, 因此是一个等价关系,在图论中就对应一个连通块. 在一个连通块中,当前点是那个并不影响往其他连通块的点连边,因此只 ...

  3. 2017.12.2 用java做一个日历

    1.先判断输入的日期是否为闰年 2.在判断输入的月份是否为2月 3.在获取输入的年份和月份的1月1日 的列数 4.在输出 import java.util.*; public class demo{ ...

  4. React后台管理系统-商品管理列表组件

    1.商品列表页面结构 <div id="page-wrapper">              <PageTitle title="商品列表" ...

  5. 零基础快速入门SpringBoot2.0教程 (四)

    一.JMS介绍和使用场景及基础编程模型 简介:讲解什么是小写队列,JMS的基础知识和使用场景 1.什么是JMS: Java消息服务(Java Message Service),Java平台中关于面向消 ...

  6. Vuex的简单了解

    vuex的官网了解:https://vuex.vuejs.org/zh/guide/ 一.什么是vuex? Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式.它采用集中式存储管理应用的所 ...

  7. SummerVocation_Learning--java的String类运用

    题目: 编写一个程序,输出一个字符串中的大写字母数,小写字母数,及其它字母数. 思路1: 可以先遍历整个字符串,在判断每个字符的类型. public class TestString { public ...

  8. [牛客OI测试赛2]F假的数学游戏(斯特灵公式)

    题意 输入一个整数X,求一个整数N,使得N!恰好大于$X^X$. Sol 考试的时候只会$O(n)$求$N!$的前缀和啊. 不过最后的结论挺好玩的 $n! \approx \sqrt{2 \pi n} ...

  9. C/C++程序基础 (八)数据结构

    非递归先序遍历 // 输出, 遍历左子树,遍历右子树 void firstOrder(Node* root) { stack<Node*> leftNodes; Node* curr = ...

  10. LAMP 一键部署

    LAMP 一键部署 部署http #!/bin/bash ### global variables export lamp_repo=http://192.168.1.5/lamp/ export l ...