Train model:

from sklearn.model_selection import GridSearchCV

param_grid = [
# try 6 (3×2) combinations of hyperparameters
{'n_neighbors': [3, 5, 7], 'weights': ['uniform','distance']}
] knn_clf = KNeighborsClassifier()
# train across 3 folds, that's a total of 6*3=18 rounds of training
grid_search = GridSearchCV(knn_clf, param_grid, cv=3,
scoring='accuracy', return_train_score=True, n_jobs=-1)
grid_search.fit(X_train, y_train)

Show parameters of best model:

grid_search.best_params_

Show the score of train set:

grid_search.best_score_

Fit on test set:

y_pred = grid_search.predict(X_test)

Show the score of test set:

from sklearn.metrics import accuracy_score
accuracy_score(y_test, y_pred)

More about GridSearchCV: https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

[Machine Learning with Python] Cross Validation and Grid Search: An Example of KNN的更多相关文章

  1. 【Machine Learning】Python开发工具:Anaconda+Sublime

    Python开发工具:Anaconda+Sublime 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现 ...

  2. Python (1) - 7 Steps to Mastering Machine Learning With Python

    Step 1: Basic Python Skills install Anacondaincluding numpy, scikit-learn, and matplotlib Step 2: Fo ...

  3. Getting started with machine learning in Python

    Getting started with machine learning in Python Machine learning is a field that uses algorithms to ...

  4. 《Learning scikit-learn Machine Learning in Python》chapter1

    前言 由于实验原因,准备入坑 python 机器学习,而 python 机器学习常用的包就是 scikit-learn ,准备先了解一下这个工具.在这里搜了有 scikit-learn 关键字的书,找 ...

  5. 机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN)

    机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN) 关键字:邻近算法(kNN: k Nearest Neighbors).python.源 ...

  6. Machine Learning的Python环境设置

    Machine Learning目前经常使用的语言有Python.R和MATLAB.如果采用Python,需要安装大量的数学相关和Machine Learning的包.一般安装Anaconda,可以把 ...

  7. [Machine Learning with Python] Familiar with Your Data

    Here I list some useful functions in Python to get familiar with your data. As an example, we load a ...

  8. [Machine Learning with Python] My First Data Preprocessing Pipeline with Titanic Dataset

    The Dataset was acquired from https://www.kaggle.com/c/titanic For data preprocessing, I firstly def ...

  9. [Machine Learning with Python] Data Preparation through Transformation Pipeline

    In the former article "Data Preparation by Pandas and Scikit-Learn", we discussed about a ...

随机推荐

  1. visual studio 2010 自带reporting报表本地加载的使用

    原文:visual studio 2010 自带reporting报表本地加载的使用 在这家公司时间不长,接触都是之前没玩过的东东,先是工作流引擎和各种邮件短信的审核信息,后又是部署reporting ...

  2. 基类View

    尽管类视图看上去类的种类繁多,但每个类都是各司其职的,且从类的命名就可以很容易地看出这个类的功能.大致可分为如下三个大的功能块,分别由三个类提供对应的方法: 处理 HTTP 请求.根据 HTTP 请求 ...

  3. 引用其他头文件时出现这种错误,莫名其妙,error C2065: “ColorMatrix”: 未声明的标识符

    今天做项目时,直接拷贝了另一个工程里的头文件和源文件,然后运行时就出现这种问题,莫名其妙,在原程序里运行一点问题就没有,但是在新工程里就是error. >e:\c++\button_fly2\b ...

  4. PAT1021

    给定一个k位整数N = dk-1*10k-1 + ... + d1*101 + d0 (0<=di<=9, i=0,...,k-1, dk-1>0),请编写程序统计每种不同的个位数字 ...

  5. 用日志记录Linux用户执行的每一条命令(history)

    工作中,需要把用户执行的每一个命令都记录下来,并发送到日志服务器的需求,为此我做了一个简单的解决方案.这个方案会在每个用户退出登录 时把用户所执行的每一个命令都发送给日志守护进程rsyslogd,你也 ...

  6. 6个超实用的PHP代码片段

    一.黑名单过滤 function is_spam($text, $file, $split = ':', $regex = false){ $handle = fopen($file, 'rb'); ...

  7. ZOJ 3780 Paint the Grid Again(隐式图拓扑排序)

    Paint the Grid Again Time Limit: 2 Seconds      Memory Limit: 65536 KB Leo has a grid with N × N cel ...

  8. hihoCoder 1467 2-SAT·hihoCoder音乐节(2-SAT模版)

    #1467 : 2-SAT·hihoCoder音乐节 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 hihoCoder音乐节由hihoCoder赞助商大力主办,邀请了众 ...

  9. BZOJ 1067 降雨量(RMQ-ST+有毒的分类讨论)

    1067: [SCOI2007]降雨量 Time Limit: 1 Sec  Memory Limit: 162 MB Submit: 4399  Solved: 1182 [Submit][Stat ...

  10. Knights of the Round Table

    Knights of the Round Table Being a knight is a very attractive career: searching for the Holy Grail, ...