笔记-python-standard library-9.6 random
笔记-python-standard library-9.6 random
1. random
source code:Lib/random.py
1.1. functions for integers
random.randrange(stop)
random.randrange(start, stop[, step])
从range(start, stop, step)中返回一个随机选择的元素。注意并不会生成一个range对象。
random.randint(a,b)
return a random integer N such that a<=N <=b.alias for randrange(a, b+1)
1.2. functions for sequences
random.choice(seq)
return a random element from the non-empty sequence seq. if seq is empty, raises IndexError.
random.shuffle(x[, random]) shuffle the sequence x in place.
the optional argument random is a 0-argument function returning a random float in[0.0,1.0];by default, this is the function random().
random.sample(population,k)
return a k length list of unique elements chosen from the population sequence or set.
注意,已选择过的元素不会再次选中。
1.3. real-valued distriutions
random.random()
return the next random floating point number in the range [0.0,1.0].
random.uniform(a, b)
return a random floating point number N such that a<=N<=b for a<=b and b<=N<=a for b<a.
1.4. examples
下面是一些例子,基本可以满足常用场景。
Basic examples:
>>> random() # Random float: 0.0 <= x < 1.0
0.37444887175646646
>>> uniform(2.5, 10.0) # Random float: 2.5 <= x < 10.0
3.1800146073117523
>>> expovariate(1 / 5) # Interval between arrivals averaging 5 seconds
5.148957571865031
>>> randrange(10) # Integer from 0 to 9 inclusive
7
>>> randrange(0, 101, 2) # Even integer from 0 to 100 inclusive
26
>>> choice(['win', 'lose', 'draw']) # Single random element from a sequence
'draw'
>>> deck = 'ace two three four'.split()
>>> shuffle(deck) # Shuffle a list
>>> deck
['four', 'two', 'ace', 'three']
>>> sample([10, 20, 30, 40, 50], k=4) # Four samples without replacement
[40, 10, 50, 30]
Simulations:
>>> # Six roulette wheel spins (weighted sampling with replacement)
>>> choices(['red', 'black', 'green'], [18, 18, 2], k=6)
['red', 'green', 'black', 'black', 'red', 'black']
>>> # Deal 20 cards without replacement from a deck of 52 playing cards
>>> # and determine the proportion of cards with a ten-value
>>> # (a ten, jack, queen, or king).
>>> deck = collections.Counter(tens=16, low_cards=36)
>>> seen = sample(list(deck.elements()), k=20)
>>> seen.count('tens') / 20
0.15
>>> # Estimate the probability of getting 5 or more heads from 7 spins
>>> # of a biased coin that settles on heads 60% of the time.
>>> trial = lambda: choices('HT', cum_weights=(0.60, 1.00), k=7).count('H') >= 5
>>> sum(trial() for i in range(10000)) / 10000
0.4169
>>> # Probability of the median of 5 samples being in middle two quartiles
>>> trial = lambda : 2500 <= sorted(choices(range(10000), k=5))[2] < 7500
>>> sum(trial() for i in range(10000)) / 10000
0.7958
Example of statistical bootstrapping using resampling with replacement to estimate a confidence interval for the mean of a sample of size five:
# http://statistics.about.com/od/Applications/a/Example-Of-Bootstrapping.htm
from statistics import mean
from random import choices
data = 1, 2, 4, 4, 10
means = sorted(mean(choices(data, k=5)) for i in range(20))
print(f'The sample mean of {mean(data):.1f} has a 90% confidence '
f'interval from {means[1]:.1f} to {means[-2]:.1f}')
Example of a resampling permutation test to determine the statistical significance or p-value of an observed difference between the effects of a drug versus a placebo:
# Example from "Statistics is Easy" by Dennis Shasha and Manda Wilson
from statistics import mean
from random import shuffle
drug = [54, 73, 53, 70, 73, 68, 52, 65, 65]
placebo = [54, 51, 58, 44, 55, 52, 42, 47, 58, 46]
observed_diff = mean(drug) - mean(placebo)
n = 10000
count = 0
combined = drug + placebo
for i in range(n):
shuffle(combined)
new_diff = mean(combined[:len(drug)]) - mean(combined[len(drug):])
count += (new_diff >= observed_diff)
print(f'{n} label reshufflings produced only {count} instances with a difference')
print(f'at least as extreme as the observed difference of {observed_diff:.1f}.')
print(f'The one-sided p-value of {count / n:.4f} leads us to reject the null')
print(f'hypothesis that there is no difference between the drug and the placebo.')
Simulation of arrival times and service deliveries in a single server queue:
from random import expovariate, gauss
from statistics import mean, median, stdev
average_arrival_interval = 5.6
average_service_time = 5.0
stdev_service_time = 0.5
num_waiting = 0
arrivals = []
starts = []
arrival = service_end = 0.0
for i in range(20000):
if arrival <= service_end:
num_waiting += 1
arrival += expovariate(1.0 / average_arrival_interval)
arrivals.append(arrival)
else:
num_waiting -= 1
service_start = service_end if num_waiting else arrival
service_time = gauss(average_service_time, stdev_service_time)
service_end = service_start + service_time
starts.append(service_start)
waits = [start - arrival for arrival, start in zip(arrivals, starts)]
print(f'Mean wait: {mean(waits):.1f}. Stdev wait: {stdev(waits):.1f}.')
print(f'Median wait: {median(waits):.1f}. Max wait: {max(waits):.1f}.')
笔记-python-standard library-9.6 random的更多相关文章
- Python Standard Library
Python Standard Library "We'd like to pretend that 'Fredrik' is a role, but even hundreds of vo ...
- The Python Standard Library
The Python Standard Library¶ While The Python Language Reference describes the exact syntax and sema ...
- Python语言中对于json数据的编解码——Usage of json a Python standard library
一.概述 1.1 关于JSON数据格式 JSON (JavaScript Object Notation), specified by RFC 7159 (which obsoletes RFC 46 ...
- 《The Python Standard Library》——http模块阅读笔记1
官方文档:https://docs.python.org/3.5/library/http.html 偷个懒,截图如下: 即,http客户端编程一般用urllib.request库(主要用于“在这复杂 ...
- 《The Python Standard Library》——http模块阅读笔记2
http.server是用来构建HTTP服务器(web服务器)的模块,定义了许多相关的类. 创建及运行服务器的代码一般为: def run(server_class=HTTPServer, handl ...
- 《The Python Standard Library》——http模块阅读笔记3
http.cookies — HTTP state management http.cookies模块定义了一系列类来抽象cookies这个概念,一个HTTP状态管理机制.该模块支持string-on ...
- Python Standard Library 学习(一) -- Built-in Functions 内建函数
内建函数列表 Built-in Functions abs() divmod() input() open() staticmethod() all() enumerate() int() ord() ...
- [译]The Python Tutorial#10. Brief Tour of the Standard Library
[译]The Python Tutorial#Brief Tour of the Standard Library 10.1 Operating System Interface os模块为与操作系统 ...
- C++11新特性——The C++ standard library, 2nd Edition 笔记(一)
前言 这是我阅读<The C++ standard library, 2nd Edition>所做读书笔记的第一篇.这个系列基本上会以一章一篇的节奏来写,少数以C++03为主的章节会和其它 ...
- [译]The Python Tutorial#11. Brief Tour of the Standard Library — Part II
[译]The Python Tutorial#Brief Tour of the Standard Library - Part II 第二部分介绍更多满足专业编程需求的高级模块,这些模块在小型脚本中 ...
随机推荐
- CentOS6.5 环境安装配置
一.GO环境配置 1.运行命令进入/usr/local/src目录:cd /usr/local/src 2.下载安装包:运行wget --no-check-certificate https://st ...
- redis在Windows下以后台服务一键搭建集群(单机--伪集群)
redis在Windows下以后台服务一键搭建集群(单机--伪集群) 一.概述 此教程介绍如何在windows系统中同一台机器上布置redis伪集群,同时要以后台服务的模式运行.布置以脚本的形式,一键 ...
- Mysql数据库学习总结(一)
数据库概念 数据库(Database)是按照数据结构来组织.存储和管理数据,建立在计算机存储设备上的仓库. 简单说,数据库就是存放数据的仓库.和图书馆存放书籍.粮仓存放粮食类似. 数据库分类 分为 关 ...
- 绿卡基础知识:I-129
绿卡基础知识:I-129 标签: 绿卡基础知识 I-129 表格本不该你来填的.那是你老板的 business.在美国工作,除非是公民或有绿卡,都需要移民局的批准.如果你没有 EAD,I-129 就是 ...
- 打造颠覆你想象中的高性能,轻量级的webform框架-----如何替换webform的垃圾控件(第一天)
前文描述: 随着.net 推出 MVC框架以来,webform 与 mvc 的争论一直没有停止过,一直以来 mvc 的 拥护者远远高于 webform,但是webfrom的有些优势又是mvc而无法替 ...
- IOS 截屏(保存到相册中)
@interface NJViewController () /** * 点击截屏按钮 */ - (IBAction)captureView:(UIButton *)sender; /** * 白色v ...
- C/C++语言补缺 宏- extern "C"-C/C++互调
1. 宏中的# 宏中的#的功能是将其后面的宏参数进行字符串化操作(Stringizing operator),简单说就是在它引用的宏变量的左右各加上一个双引号. 如定义好#define STRING( ...
- Mybatis-动态 SQL语句
if标签 判断语句,用户单条件分支判断 where标签 为了简化上面where 1=1的条件拼装,我们可以采用标签来简化开发 同 foreach标签 场景:传入多个 id 查询用户信息 标签用于遍历集 ...
- python实现二叉树的镜像
题目描述 操作给定的二叉树,将其变换为源二叉树的镜像. 输入描述: 二叉树的镜像定义:源二叉树 8 / \ 6 10 / \ / \ 5 7 9 11 镜像二叉树 8 / \ 10 6 / \ / \ ...
- Java Web Application使Session永不失效(利用cookie隐藏登录)
在做 Web Application 时,因为 Web Project 有 session 自动失效的问题,所以如何让用户登录一次系统就能长时间运行三个月,就是个问题. 后来,看到 session 失 ...