【bzoj1718】Redundant Paths 分离的路径
1718: [Usaco2006 Jan] Redundant Paths 分离的路径
Time Limit: 5 Sec Memory Limit: 64 MB
Submit: 964 Solved: 503
[Submit][Status][Discuss]
Description
In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of often being forced to take a particular path and want to build some new paths so that they will always have a choice of at least two separate routes between any pair of fields. They currently have at least one route between each pair of fields and want to have at least two. Of course, they can only travel on Official Paths when they move from one field to another. Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way. There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.
Input
* Line 1: Two space-separated integers: F and R * Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.
Output
* Line 1: A single integer that is the number of new paths that must be built.
Sample Input
1 2
2 3
3 4
2 5
4 5
5 6
5 7
Sample Output
HINT
Source
题意:
给你一个无向图$G$,求至少加几条边能使它变成一个边双联通分量。
题解:
首先把原图中所有边双缩点后连边,原图变成一棵树。
注意$u->v$这条边是割边当且仅当$dfn[u]<low[v]$,既然是无向图,搜索树中以$v$为根的子树就可以被认为是一个边双的起点了。
那么现在问题变成在树上添加几条边使其变成一个边双(说是环也行),相当于最终叶子节点个数为$0$。
看起来我们每次应该选择两个叶子节点$u,v$连边,那么应该如何选择呢?
考虑贪心,只要保证每次连边后尽量不产生叶子节点即可。
那么显然连接一对$u,v$使得$u->v$的简单路径上有树枝即可不产生叶子节点。
最后连完可能会剩下一个,再多一条边即可。设叶子节点个数为$k$,所求答案为$\frac{k+1}{2}$。
(问题也可转化成每次选两个点覆盖它们简单路径上的所有点,至少多少次覆盖整棵树)
总之这道题实现简单,但结论难推也更难证。
代码:
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<stack> using namespace std;
#define MAXN 5005
#define MAXM 500005
#define INF 0x7fffffff
#define ll long long int hd[MAXN],to[MAXM<<];
int nxt[MAXM<<],cnt,num,tot;
int dfn[MAXN],low[MAXN];
int cl[MAXN],deg[MAXN];
bool ins[MAXN],vis[MAXN][MAXN];
stack<int> s; inline int read(){
int x=,f=;
char c=getchar();
for(;!isdigit(c);c=getchar())
if(c=='-')
f=-;
for(;isdigit(c);c=getchar())
x=x*+c-'';
return x*f;
} inline void addedge(int u,int v){
to[++cnt]=v,nxt[cnt]=hd[u];
hd[u]=cnt;return;
} inline void tarjan(int u,int fa){
dfn[u]=low[u]=++num;
s.push(u);ins[u]=;
for(int i=hd[u];i;i=nxt[i]){
int v=to[i];
if(v==fa) continue;
if(!dfn[v]){
tarjan(v,u);
low[u]=min(low[u],low[v]);
}
else if(ins[v])
low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u]){
tot++;
while(s.top()!=u){
ins[s.top()]=;
cl[s.top()]=tot;
s.pop();
}
ins[s.top()]=;
cl[s.top()]=tot;
s.pop();
}
return;
} int main(){
int N=read(),M=read();
for(int i=;i<=M;i++){
int u=read(),v=read();
addedge(u,v);addedge(v,u);
}
for(int i=;i<=N;i++)
if(!dfn[i])
tarjan(i,);
for(int u=;u<=N;u++)
for(int i=hd[u];i;i=nxt[i]){
int v=to[i];
if(cl[u]!=cl[v] && !vis[cl[u]][cl[v]] && !vis[cl[v]][cl[u]]){
deg[cl[u]]++,deg[cl[to[i]]]++;
vis[cl[u]][cl[v]]=;
vis[cl[v]][cl[u]]=;
}
}
int ans=;
//for(int i=1;i<=N;i++) cout<<deg[i]<<":"<<cl[i]<<endl;
for(int u=;u<=N;u++)
if(deg[u]==)
ans++;
printf("%d\n",(ans+)/);
return ;
}
【bzoj1718】Redundant Paths 分离的路径的更多相关文章
- BZOJ 1718: [Usaco2006 Jan] Redundant Paths 分离的路径( tarjan )
tarjan求边双连通分量, 然后就是一棵树了, 可以各种乱搞... ----------------------------------------------------------------- ...
- [Usaco2006 Jan] Redundant Paths 分离的路径
1718: [Usaco2006 Jan] Redundant Paths 分离的路径 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1132 Solv ...
- Redundant Paths 分离的路径【边双连通分量】
Redundant Paths 分离的路径 题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields ...
- Redundant Paths 分离的路径
Redundant Paths 分离的路径 题目描述 为了从F(1≤F≤5000)个草场中的一个走到另一个,贝茜和她的同伴们有时不得不路过一些她们讨厌的可怕的树.奶牛们已经厌倦了被迫走某一条路,所以她 ...
- BZOJ1718:[USACO]Redundant Paths 分离的路径(双连通分量)
Description In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numb ...
- [BZOJ1718]:[Usaco2006 Jan] Redundant Paths 分离的路径(塔尖)
题目传送门 题目描述 为了从F个草场中的一个走到另一个,贝茜和她的同伴们有时不得不路过一些她们讨厌的可怕的树.奶牛们已经厌倦了被迫走某一条路,所以她们想建一些新路,使每一对草场之间都会至少有两条相互分 ...
- BZOJ1718 [Usaco2006 Jan] Redundant Paths 分离的路径
给你一个无向图,问至少加几条边可以使整个图变成一个双联通分量 简单图论练习= = 先缩点,ans = (度数为1的点的个数) / 2 这不是很好想的么QAQ 然后注意位运算的优先级啊魂淡!!!你个sb ...
- BZOJ1718: [Usaco2006 Jan] Redundant Paths 分离的路径【边双模板】【傻逼题】
LINK 经典傻逼套路 就是把所有边双缩点之后叶子节点的个数 //Author: dream_maker #include<bits/stdc++.h> using namespace s ...
- C++边双缩点,Redundant Paths 分离的路径
一道比较简单的 关于边双的题,个人感觉难度不大. 求出整个图的边双,根据边双的定义我们可以延伸出 边双的任两个点都有至少两种路径来互相抵达(因为其不存在割边) .不妨将每个边双缩成一个点,样例中的图便 ...
随机推荐
- 激活win10企业长期服务版
win10 2016 长期服务版的ISO文件中本身就带有KMS激活KEY,不用输入任何KEY,连接网络进入CMD,只要输入:slmgr /skms kms.digiboy.irslmgr /ato这两 ...
- Eclipse快捷键【转载】
分享一前辈的博客-Eclipse快捷键
- # <center>merge表不可用的问题</center>
最近碰到了个很有意思的问题,值得一写 给merge表和基础表添加索引时发生了一个问题,不管是先给merge表加索引还是基础表加索引,如果表数据量大都会导致加索引期间对merge表的查询不可用,因为使用 ...
- Spring注解原理的详细剖析与实现
本文主要分为三部分: 一. 注解的基本概念和原理及其简单实用 二. Spring中如何使用注解 三. 编码剖析spring@Resource的实现原理 一.注解的基本概念和原理及其简单实用 注解(An ...
- Windows Power Shell
Windows PowerShell 是一种命令行外壳程序和脚本环境,使命令行用户和脚本编写者可以利用 .NET Framework的强大功能. 它引入了许多非常有用的新概念,从而进一步扩展了您在 W ...
- 自定义标签(客户化jsp标签)
客户化jsp标签技术是在jsp1.1版本中才出现的,他支持用户在jsp文件中自定义标签,这样可以使jsp代码更加简单,这些可重用的标签能够处理复杂的逻辑运算和事物或定义jsp网页的输出内容和格式. 创 ...
- 简单封装微信小程序
一.不同环境配置封装 新建config文件夹,根据自己有不同环境设置不同的js文件 具体js文件内容: exports.config = { requestHost: 'https://******. ...
- Oracle数据常用操作
将用逗号隔开字段拆分成两行: select * from mp_fs_file_info a,dm_process_upload b where instr(b.attachment,a.file_i ...
- Dom4j 操作文件,文件相对路径的问题
System.out.println("xml路径:"+ServletActionContext.getServletContext().getRealPath("/zx ...
- C++之自己实现的String类全部
一:回顾 (1)c++中的string类是在面试中和笔试中经常考的题目: 工程代码免费下载 string类的自行实现 (2)c++中的string类和fstream类合起来是处理外部数据的利器: (3 ...