1718: [Usaco2006 Jan] Redundant Paths 分离的路径

Time Limit: 5 Sec  Memory Limit: 64 MB
Submit: 964  Solved: 503
[Submit][Status][Discuss]

Description

In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of often being forced to take a particular path and want to build some new paths so that they will always have a choice of at least two separate routes between any pair of fields. They currently have at least one route between each pair of fields and want to have at least two. Of course, they can only travel on Official Paths when they move from one field to another. Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way. There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.

    为了从F(1≤F≤5000)个草场中的一个走到另一个,贝茜和她的同伴们有时不得不路过一些她们讨厌的可怕的树.奶牛们已经厌倦了被迫走某一条路,所以她们想建一些新路,使每一对草场之间都会至少有两条相互分离的路径,这样她们就有多一些选择.
    每对草场之间已经有至少一条路径.给出所有R(F-1≤R≤10000)条双向路的描述,每条路连接了两个不同的草场,请计算最少的新建道路的数量, 路径由若干道路首尾相连而成.两条路径相互分离,是指两条路径没有一条重合的道路.但是,两条分离的路径上可以有一些相同的草场. 对于同一对草场之间,可能已经有两条不同的道路,你也可以在它们之间再建一条道路,作为另一条不同的道路.

Input

* Line 1: Two space-separated integers: F and R * Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.

    第1行输入F和R,接下来R行,每行输入两个整数,表示两个草场,它们之间有一条道路.

Output

* Line 1: A single integer that is the number of new paths that must be built.

    最少的需要新建的道路数.

Sample Input

7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7

Sample Output

2

HINT

Source

 

题意:

给你一个无向图$G$,求至少加几条边能使它变成一个边双联通分量。

题解:

首先把原图中所有边双缩点后连边,原图变成一棵树。

注意$u->v$这条边是割边当且仅当$dfn[u]<low[v]$,既然是无向图,搜索树中以$v$为根的子树就可以被认为是一个边双的起点了。

(割边沟通的两点必定不在一个边双中;无向图搜索树没有横叉边)

那么现在问题变成在树上添加几条边使其变成一个边双(说是环也行),相当于最终叶子节点个数为$0$。

看起来我们每次应该选择两个叶子节点$u,v$连边,那么应该如何选择呢?

考虑贪心,只要保证每次连边后尽量不产生叶子节点即可。

那么显然连接一对$u,v$使得$u->v$的简单路径上有树枝即可不产生叶子节点。

最后连完可能会剩下一个,再多一条边即可。设叶子节点个数为$k$,所求答案为$\frac{k+1}{2}$。

(问题也可转化成每次选两个点覆盖它们简单路径上的所有点,至少多少次覆盖整棵树)

总之这道题实现简单,但结论难推也更难证。

代码:

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<stack> using namespace std;
#define MAXN 5005
#define MAXM 500005
#define INF 0x7fffffff
#define ll long long int hd[MAXN],to[MAXM<<];
int nxt[MAXM<<],cnt,num,tot;
int dfn[MAXN],low[MAXN];
int cl[MAXN],deg[MAXN];
bool ins[MAXN],vis[MAXN][MAXN];
stack<int> s; inline int read(){
int x=,f=;
char c=getchar();
for(;!isdigit(c);c=getchar())
if(c=='-')
f=-;
for(;isdigit(c);c=getchar())
x=x*+c-'';
return x*f;
} inline void addedge(int u,int v){
to[++cnt]=v,nxt[cnt]=hd[u];
hd[u]=cnt;return;
} inline void tarjan(int u,int fa){
dfn[u]=low[u]=++num;
s.push(u);ins[u]=;
for(int i=hd[u];i;i=nxt[i]){
int v=to[i];
if(v==fa) continue;
if(!dfn[v]){
tarjan(v,u);
low[u]=min(low[u],low[v]);
}
else if(ins[v])
low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u]){
tot++;
while(s.top()!=u){
ins[s.top()]=;
cl[s.top()]=tot;
s.pop();
}
ins[s.top()]=;
cl[s.top()]=tot;
s.pop();
}
return;
} int main(){
int N=read(),M=read();
for(int i=;i<=M;i++){
int u=read(),v=read();
addedge(u,v);addedge(v,u);
}
for(int i=;i<=N;i++)
if(!dfn[i])
tarjan(i,);
for(int u=;u<=N;u++)
for(int i=hd[u];i;i=nxt[i]){
int v=to[i];
if(cl[u]!=cl[v] && !vis[cl[u]][cl[v]] && !vis[cl[v]][cl[u]]){
deg[cl[u]]++,deg[cl[to[i]]]++;
vis[cl[u]][cl[v]]=;
vis[cl[v]][cl[u]]=;
}
}
int ans=;
//for(int i=1;i<=N;i++) cout<<deg[i]<<":"<<cl[i]<<endl;
for(int u=;u<=N;u++)
if(deg[u]==)
ans++;
printf("%d\n",(ans+)/);
return ;
}

【bzoj1718】Redundant Paths 分离的路径的更多相关文章

  1. BZOJ 1718: [Usaco2006 Jan] Redundant Paths 分离的路径( tarjan )

    tarjan求边双连通分量, 然后就是一棵树了, 可以各种乱搞... ----------------------------------------------------------------- ...

  2. [Usaco2006 Jan] Redundant Paths 分离的路径

    1718: [Usaco2006 Jan] Redundant Paths 分离的路径 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1132  Solv ...

  3. Redundant Paths 分离的路径【边双连通分量】

    Redundant Paths 分离的路径 题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields ...

  4. Redundant Paths 分离的路径

    Redundant Paths 分离的路径 题目描述 为了从F(1≤F≤5000)个草场中的一个走到另一个,贝茜和她的同伴们有时不得不路过一些她们讨厌的可怕的树.奶牛们已经厌倦了被迫走某一条路,所以她 ...

  5. BZOJ1718:[USACO]Redundant Paths 分离的路径(双连通分量)

    Description In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numb ...

  6. [BZOJ1718]:[Usaco2006 Jan] Redundant Paths 分离的路径(塔尖)

    题目传送门 题目描述 为了从F个草场中的一个走到另一个,贝茜和她的同伴们有时不得不路过一些她们讨厌的可怕的树.奶牛们已经厌倦了被迫走某一条路,所以她们想建一些新路,使每一对草场之间都会至少有两条相互分 ...

  7. BZOJ1718 [Usaco2006 Jan] Redundant Paths 分离的路径

    给你一个无向图,问至少加几条边可以使整个图变成一个双联通分量 简单图论练习= = 先缩点,ans = (度数为1的点的个数) / 2 这不是很好想的么QAQ 然后注意位运算的优先级啊魂淡!!!你个sb ...

  8. BZOJ1718: [Usaco2006 Jan] Redundant Paths 分离的路径【边双模板】【傻逼题】

    LINK 经典傻逼套路 就是把所有边双缩点之后叶子节点的个数 //Author: dream_maker #include<bits/stdc++.h> using namespace s ...

  9. C++边双缩点,Redundant Paths 分离的路径

    一道比较简单的 关于边双的题,个人感觉难度不大. 求出整个图的边双,根据边双的定义我们可以延伸出 边双的任两个点都有至少两种路径来互相抵达(因为其不存在割边) .不妨将每个边双缩成一个点,样例中的图便 ...

随机推荐

  1. Windows程序设计(1)——Win32运行原理(二)

    创建进程 1 进程和线程 2 应用程序的启动过程 3 CreateProcess函数 4 实例 3 创建进程 3.1 进程和线程 进程通常被定义为一个存在运行的程序的实例.进程是一个正在运行的程序,它 ...

  2. POJ2406 Power Strings —— KMP or 后缀数组 最小循环节

    题目链接:https://vjudge.net/problem/POJ-2406 Power Strings Time Limit: 3000MS   Memory Limit: 65536K Tot ...

  3. runtime之方法的交换

    工作中没怎么用到runtime的东西,所以一直没怎么看,现在开始拿起来. runtime之方法的交换: 都知道OC中有category可以对已知类进行扩展,但是假如工程中需要修改某类的原方法,若用ca ...

  4. zabbix 中 宏 的介绍

    宏的作用是便于在模板.items.trigger中的引用.宏的名称为 {$名称},宏的字符范围为 A~Z.0~9._ . 例如: 在key中的宏: net.tcp.service[ssh,{$SSH_ ...

  5. POJ3728 THE MERCHANT LCA RMQ DP

    题意简述:给定一个N个节点的树,1<=N<=50000 每个节点都有一个权值,代表商品在这个节点的价格.商人从某个节点a移动到节点b,且只能购买并出售一次商品,问最多可以产生多大的利润. ...

  6. 「IOI1998」「LuoguP4342」Polygon(区间dp

    P4342 [IOI1998]Polygon - 洛谷 题意翻译 题目可能有些许修改,但大意一致 多边形是一个玩家在一个有n个顶点的多边形上的游戏,如图所示,其中n=4.每个顶点用整数标记,每个边用符 ...

  7. react之redux增加删除数字

    比如在页面中添加和删除‘222’ action.js export const ADD= 'ADD'; export const RED='RED'; export const add=(str)=& ...

  8. spring配置数据库连接池

    1. jdbcConfig.properties文件中 jdbc.jdbcUrl=jdbc:mysql:///ssm-crudjdbc.driverClass=com.mysql.jdbc.Drive ...

  9. bzoj5102

    $贪心$ $按左端点排序.$ $当我们钦定了最右的左端点,那么自然希望右端点尽量靠右$ $考虑之前的区间,那么我们相当于选之前的区间中第k大的右端点$ $堆维护一下就可以了,每次把新的元素放进堆,如果 ...

  10. bzoj4430

    bit+容斥原理 我不会cdq分治只能用这个做法 考虑什么情况下不满足,至少有一个顺序不对就不行了,那么不满足的总有两对属性形成逆序对,那么我们用总方案数*2=n*(n-1)减去不符合的*2再/2就是 ...