【题解】AT2134 Zigzag MST

一道MST好题

\(Anson\)有云:

  • 要么是减少边的数量。
  • 要么是改变连接边的方式。

那么如何减少边的数量呢?很简单,把所有不可能对答案产生贡献的边去掉也就是不加,这样就可以减少边的数量了。

怎么改变边的连接方式?很简单,考虑这样子的情况\(\ (1->2),(2->3)\)。此时我们连接一个\((1->3)\)就好了,类比向量?,确实。

那么这一题怎么考虑呢??

发现没有,\((7->14)\)和\((14->8)\)有一组边,我们直接可以连接\((7->8)\),就变成递推了。

设置\(f(x)\)是编号\(x\)点从逆时针方向走过来的最短距离。

考虑初始条件,对于三元组\((a,b,c) , f(a)=c+1,f(b)=c+2\),这样子这只初始条件到时候就只要递推就好了,转移就是\(f(x)=f(x-1)+2 , x\)在\(\mod n\)下。取Min就好了

#include<bits/stdc++.h>
#define int ll
using namespace std;typedef long long ll;
#define DRP(t,a,b) for(register int t=(a),edd=(b);t>=edd;--t)
#define RP(t,a,b) for(register int t=(a),edd=(b);t<=edd;++t)
#define ERP(t,a) for(register int t=head[a];t;t=e[t].nx)
#define midd register int mid=(l+r)>>1
#define TMP template < class ccf >
#define lef l,mid,pos<<1
#define rgt mid+1,r,pos<<1|1
#define pushup(pos) (seg[pos]=seg[pos<<1]+seg[pos<<1|1])
TMP inline ccf qr(ccf b){
register char c=getchar();register int q=1;register ccf x=0;
while(c<48||c>57)q=c==45?-1:q,c=getchar();
while(c>=48&&c<=57)x=x*10+c-48,c=getchar();
return q==-1?-x:x;}
TMP inline ccf Max(ccf a,ccf b){return a<b?b:a;}
TMP inline ccf Min(ccf a,ccf b){return a<b?a:b;}
TMP inline ccf Max(ccf a,ccf b,ccf c){return Max(a,Max(b,c));}
TMP inline ccf Min(ccf a,ccf b,ccf c){return Min(a,Min(b,c));}
TMP inline ccf READ(ccf* _arr,int _n){RP(t,1,_n)_arr[t]=qr((ccf)1);}
//----------------------template&IO---------------------------
const int maxn=200005;
struct E{
int fr,to,w;
inline bool operator < (E a){return w<a.w;}
}e[maxn<<1];
int cnt;
int r[maxn];
inline void add(int fr,int to,int w){
e[++cnt]=(E){fr,to,w};
}
inline int q(int x){
register int t=x,i=x,temp;
while(r[t]!=t) t=r[t];temp=t;
while(r[i]!=i) {temp=r[i];r[i]=t;i=temp;}
return t;
} inline bool in(int x,int y){return not(q(x)^q(y));}
inline void j(int x,int y){r[q(x)]=q(y);} int f[maxn];
int n,m;
signed main(){
n=qr(1LL);m=qr(1LL);
RP(t,0,n) r[t]=t;
register int t1,t2,t3;
RP(t,0,n+1) f[t]=1LL<<50;
RP(t,1,m){
t1=qr(1);
t2=qr(1);
t3=qr(1);
add(t1,t2,t3);
f[t1]=Min(f[t1],t3+1LL);
f[t2]=Min(f[t2],t3+2LL);
}
RP(t0,1,2) RP(t,0,n) f[t%n]=Min(f[t%n],f[(t-1+n)%n]+2LL);
RP(t,0,n) add(t%n,(t+1)%n,f[t%n]);
sort(e+1,e+cnt+1);ll ret=0;
RP(t,1,cnt){
if(not in(e[t].fr,e[t].to)){
ret+=(ll)e[t].w;
j(e[t].fr,e[t].to);
}
}
cout<<ret<<endl;
return 0;
}

【题解】 AT2134 Zigzag MST的更多相关文章

  1. 题解 [AT2134] Zigzag MST

    题面 解析 我们先考虑一下加一条边(x,y,z)会成什么亚子: (还有很多边不画了...) 然后我们把这个图单独拿出来: 我们可以发现,对于最小生成树的贡献, 它是等价于下面这张图的(因为连通性一样) ...

  2. AT2134 Zigzag MST

    题面 题解 这个题目主要是连边很奇怪,但是我们可以发现一个性质:权值是递增的. 于是像下图的连边:(加边方式为\((A_1, B_1, 1)\)) 其实可以等价于如下连边: 于是我们将其变成了在环上连 ...

  3. [题解] [AtCoder2134] Zigzag MST

    题面 题解 考虑kruscal的过程 对于三个点\(x, y, x + 1\), 我们可以将\((x, y, z), (y, x + 1, z + 1)\)看做\((x, y, z), (x, x + ...

  4. AT2134 Zigzag MST 最小生成树

    正解:最小生成树 解题报告: 先放下传送门QAQ 然后这题,首先可以发现这神奇的连边方式真是令人头大,,,显然要考虑转化掉QAQ 大概看一下可以发现点对的规律是,左边++,交换位置,再仔细想下,就每个 ...

  5. 【AtCoder2134】ZigZag MST(最小生成树)

    [AtCoder2134]ZigZag MST(最小生成树) 题面 洛谷 AtCoder 题解 这题就很鬼畜.. 既然每次连边,连出来的边的权值是递增的,所以拿个线段树xjb维护一下就可以做了.那么意 ...

  6. leetcode题解 6.ZigZag Conversion

    6.ZigZag Conversion 题目: The string "PAYPALISHIRING" is written in a zigzag pattern on a gi ...

  7. 《LeetBook》leetcode题解(6): ZigZag Conversion[E]

    我现在在做一个叫<leetbook>的免费开源书项目,力求提供最易懂的中文思路,目前把解题思路都同步更新到gitbook上了,需要的同学可以去看看 书的地址:https://hk029.g ...

  8. Atcoder CODE FESTIVAL 2016 Final G - Zigzag MST[最小生成树]

    题意:$n$个点,$q$次建边,每次建边选定$x,y$,权值$c$,然后接着$(y,x+1,c+1),(x+1,y+1,c+2),(y+1,x+2,c+3),(x+2,y+2,c+4)\dots$(画 ...

  9. Atcoder2134 Zigzag MST

    问题描述 We have a graph with N vertices, numbered 0 through N−1. Edges are yet to be added. We will pro ...

随机推荐

  1. SecureCRT使用Ctrl+D快速关闭Tab

  2. libcurl多线程超时设置不安全

    from http://blog.csdn.net/sctq8888/article/details/10031219 (1), 超时(timeout) libcurl 是 一个很不错的库,支持htt ...

  3. Beginning Auto Layout Tutorial in iOS 7: Part 4

    A little runtime excursion 为两个button都添加同一个ibaction方法在viewcontroller.m中实现如下的方法:

  4. logback MDC(Mapped Diagnostic Context)与分布式系统的跟踪系统

    logback MDC(Mapped Diagnostic Context)与分布式系统的跟踪系统 logback官方文档中第8章Mapped Diagnostic Context给我们提供了一些分布 ...

  5. Linux下不重启永久修改hostname

    LINUX下不重启永久修改hostname 1.如果只是修改hostname可以通过如下命令 hostname newHostname   注意:这种修改方式只有当前有效,等服务器重启后hostnam ...

  6. Netty通过心跳保持长链接

    Netty自带心跳检测功能,IdleStateHandler,客户端在写空闲时主动发起心跳请求,服务器接受到心跳请求后给出一个心跳响应.当客户端在一定时间范围内不能够给出响应则断开链接. public ...

  7. GlusterFS源代码解析 —— GlusterFS 内存分配方式

    原文地址:http://blog.csdn.net/wangyuling1234567890/article/details/24564891 GlusterFS 的内存分配主要有两种方式,一种是内存 ...

  8. 学习日记之享元模式和Effective C++

    享元模式(Flyweight):运用共享技术有效地支持大量细粒度的对象. (1),享元模式能够避免大量很相似的开销.在程序设计中,有时须要生成大量细粒度的类实例来表示数据.假设能发现这些实例除了几个參 ...

  9. Codeforces Round #277.5 (Div. 2)(C题)

    C. Given Length and Sum of Digits... time limit per test 1 second memory limit per test 256 megabyte ...

  10. 跟着实例学习设计模式(9)-桥接模式bridge(结构型)

    桥接模式属于结构型设计模式. 设计意图:将抽象部分与实现部分分离.使它们都能够独立的变化. 一看到设计意图,大家可能有些发懵,我们看到的继承和接口不都是抽象和实现分离的吗?尤其是接口和抽象类都是这种实 ...